These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 29717309)

  • 1. Revealing the linear relationship between electrical, thermal, mechanical and structural properties of carbon nanocoils.
    Deng C; Li C; Wang P; Wang X; Pan L
    Phys Chem Chem Phys; 2018 May; 20(19):13316-13321. PubMed ID: 29717309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Diffusivity of a Single Carbon Nanocoil: Uncovering the Correlation with Temperature and Domain Size.
    Deng C; Sun Y; Pan L; Wang T; Xie Y; Liu J; Zhu B; Wang X
    ACS Nano; 2016 Oct; 10(10):9710-9719. PubMed ID: 27715005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Growth of High-Strength Carbon Nanocoils in Molten Carbonates.
    Yu R; Xiang J; Du K; Deng B; Chen D; Yin H; Liu Z; Wang D
    Nano Lett; 2022 Jan; 22(1):97-104. PubMed ID: 34958590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement.
    Tang N; Kuo W; Jeng C; Wang L; Lin K; Du Y
    ACS Nano; 2010 Feb; 4(2):781-8. PubMed ID: 20092354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superelasticity of Carbon Nanocoils from Atomistic Quantum Simulations.
    Liu LZ; Gao HL; Zhao JJ; Lu JP
    Nanoscale Res Lett; 2010 Feb; 5(3):478-483. PubMed ID: 20671790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormal linear elasticity in polycrystalline phosphorene.
    Liu N; Pidaparti R; Wang X
    Phys Chem Chem Phys; 2018 Mar; 20(13):8668-8675. PubMed ID: 29537000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-driven nanoactuators based on carbon nanocoils and vanadium dioxide bimorphs.
    Ma H; Zhang X; Cui R; Liu F; Wang M; Huang C; Hou J; Wang G; Wei Y; Jiang K; Pan L; Liu K
    Nanoscale; 2018 Jun; 10(23):11158-11164. PubMed ID: 29873375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Carbon Nanocoils by Porous α-Fe
    Zhao Y; Wang J; Huang H; Cong T; Yang S; Chen H; Qin J; Usman M; Fan Z; Pan L
    Nanomicro Lett; 2020 Jan; 12(1):23. PubMed ID: 34138078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K and Au bicatalyst assisted growth of carbon nanocoils from acetylene: effect of deposition parameters on field emission properties.
    Tsou TY; Lee CY; Chiu HT
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6505-11. PubMed ID: 23167627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong and Conductive Dry Carbon Nanotube Films by Microcombing.
    Zhang L; Wang X; Xu W; Zhang Y; Li Q; Bradford PD; Zhu Y
    Small; 2015 Aug; 11(31):3830-6. PubMed ID: 25941071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromechanical properties of zigzag-shaped carbon nanotubes.
    Liu L; Gao J; Guo X; Zhao J
    Phys Chem Chem Phys; 2013 Oct; 15(40):17134-41. PubMed ID: 24005096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning carbon nanotube assembly for flexible, strong and conductive films.
    Wang Y; Li M; Gu Y; Zhang X; Wang S; Li Q; Zhang Z
    Nanoscale; 2015 Feb; 7(7):3060-6. PubMed ID: 25607989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of nanosprings.
    da Fonseca AF; Galvão DS
    Phys Rev Lett; 2004 Apr; 92(17):175502. PubMed ID: 15169166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructure and physical properties of cellulose nanofiber-carbon nanotube composite films.
    Yamakawa A; Suzuki S; Oku T; Enomoto K; Ikeda M; Rodrigue J; Tateiwa K; Terada Y; Yano H; Kitamura S
    Carbohydr Polym; 2017 Sep; 171():129-135. PubMed ID: 28578946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of boron nitride impurities on the elastic properties of carbon nanotubes.
    Yuan J; Liew KM
    Nanotechnology; 2008 Nov; 19(44):445703. PubMed ID: 21832745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring Physical Parameters from Images of Vibrating Carbon Nanotubes.
    Treacy MM; Krishnan A; Yianilos PN
    Microsc Microanal; 2000 Jul; 6(4):317-323. PubMed ID: 10898814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wall "thickness" effects on Raman spectrum shift, thermal conductivity, and Young's modulus of single-walled nanotubes.
    Zhang G; Li B
    J Phys Chem B; 2005 Dec; 109(50):23823-6. PubMed ID: 16375367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic flexural properties of multistranded stainless steel versus conventional nickel titanium archwires.
    Rucker BK; Kusy RP
    Angle Orthod; 2002 Aug; 72(4):302-9. PubMed ID: 12169029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure.
    Haskins RW; Maier RS; Ebeling RM; Marsh CP; Majure DL; Bednar AJ; Welch CR; Barker BC; Wu DT
    J Chem Phys; 2007 Aug; 127(7):074708. PubMed ID: 17718628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.