BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29717581)

  • 1. [Plaque region segmentation of intracoronary optical cohenrence tomography images based on kernel graph cuts].
    Zhang B; Yang J; Wang G; Wang H; Liu X; Han Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2017 Feb; 34(1):15-20. PubMed ID: 29717581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Automatic multi-region segmentation of intracoronary optical coherence tomography images based on neutrosophic theory].
    Wang G; Zhang X; Han Y; Wang H; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Feb; 36(1):59-67. PubMed ID: 30887777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images.
    Chatzizisis YS; Koutkias VG; Toutouzas K; Giannopoulos A; Chouvarda I; Riga M; Antoniadis AP; Cheimariotis G; Doulaverakis C; Tsampoulatidis I; Bouki K; Kompatsiaris I; Stefanadis C; Maglaveras N; Giannoglou GD
    Int J Cardiol; 2014 Apr; 172(3):568-80. PubMed ID: 24529948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Plaque segmentation of intracoronary optical coherence tomography images based on
    Wang G; Wang P; Han Y; Liu X; Li Y; Lu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2017 Jun; 34(6):869-875. PubMed ID: 29761981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning-based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography  images.
    Abdolmanafi A; Duong L; Ibrahim R; Dahdah N
    Med Phys; 2021 Jul; 48(7):3511-3524. PubMed ID: 33914917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early Diagnosis and Treatment of Coronary Heart Disease with Image Features of Optical Coherence Tomography under Adaptive Segmentation Algorithm.
    Lin C
    Comput Math Methods Med; 2022; 2022():1261259. PubMed ID: 35979043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracoronary imaging using attenuation-compensated optical coherence tomography allows better visualisation of coronary artery diseases.
    Foin N; Mari JM; Nijjer S; Sen S; Petraco R; Ghione M; Di Mario C; Davies JE; Girard MJ
    Cardiovasc Revasc Med; 2013; 14(3):139-43. PubMed ID: 23632229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated diagnosis of optical coherence tomography imaging on plaque vulnerability and its relation to clinical outcomes in coronary artery disease.
    Niioka H; Kume T; Kubo T; Soeda T; Watanabe M; Yamada R; Sakata Y; Miyamoto Y; Wang B; Nagahara H; Miyake J; Akasaka T; Saito Y; Uemura S
    Sci Rep; 2022 Aug; 12(1):14067. PubMed ID: 35982217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo evaluation of fibrous cap thickness by optical coherence tomography for positive remodeling and low-attenuation plaques assessed by computed tomography angiography.
    Sato A; Hoshi T; Kakefuda Y; Hiraya D; Watabe H; Kawabe M; Akiyama D; Koike A; Aonuma K
    Int J Cardiol; 2015 Mar; 182():419-25. PubMed ID: 25596470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Coherence Tomography Vulnerable Plaque Segmentation Based on Deep Residual U-Net.
    Li L; Jia T
    Rev Cardiovasc Med; 2019 Sep; 20(3):171-177. PubMed ID: 31601091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images.
    Wang Z; Kyono H; Bezerra HG; Wang H; Gargesha M; Alraies C; Xu C; Schmitt JM; Wilson DL; Costa MA; Rollins AM
    J Biomed Opt; 2010; 15(6):061711. PubMed ID: 21198159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of serial optical coherence tomography measurements for lumen area and plaque components in humans (The CLI-VAR [Centro per la Lotta Contro l'Infarto-variability] II study).
    Paoletti G; Marco V; Romagnoli E; Gatto L; Fedele S; Mangiameli A; Ramazzotti V; Castriota F; Di Vito L; Ricciardi A; Prati F
    Int J Cardiovasc Imaging; 2016 Mar; 32(3):381-7. PubMed ID: 26585751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-aided image analysis algorithm to enhance in vivo diagnosis of plaque erosion by intravascular optical coherence tomography.
    Wang Z; Jia H; Tian J; Soeda T; Vergallo R; Minami Y; Lee H; Aguirre A; Fujimoto JG; Jang IK
    Circ Cardiovasc Imaging; 2014 Sep; 7(5):805-10. PubMed ID: 25034595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial progenitor cells and plaque burden in stented coronary artery segments: an optical coherence tomography study six months after elective PCI.
    Otto S; Nitsche K; Jung C; Kryvanos A; Zhylka A; Heitkamp K; Gutiérrez-Chico JL; Goebel B; Schulze PC; Figulla HR; Poerner TC
    BMC Cardiovasc Disord; 2017 Apr; 17(1):103. PubMed ID: 28441929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound.
    Jang IK; Bouma BE; Kang DH; Park SJ; Park SW; Seung KB; Choi KB; Shishkov M; Schlendorf K; Pomerantsev E; Houser SL; Aretz HT; Tearney GJ
    J Am Coll Cardiol; 2002 Feb; 39(4):604-9. PubMed ID: 11849858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sk-Conv and SPP-based UNet for lesion segmentation of coronary optical coherence tomography.
    Wang Z; Zheng J; Jiang P; Gao D
    Technol Health Care; 2023; 31(S1):347-355. PubMed ID: 37066935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The diagnostic value of intracoronary optical coherence tomography.
    Regar E; Ligthart J; Bruining N; van Soest G
    Herz; 2011 Aug; 36(5):417-29. PubMed ID: 21744151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.
    Verjans JW; Osborn EA; Ughi GJ; Calfon Press MA; Hamidi E; Antoniadis AP; Papafaklis MI; Conrad MF; Libby P; Stone PH; Cambria RP; Tearney GJ; Jaffer FA
    JACC Cardiovasc Imaging; 2016 Sep; 9(9):1087-1095. PubMed ID: 27544892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intravascular optical coherence tomography method for automated detection of macrophage infiltration within atherosclerotic coronary plaques.
    Rico-Jimenez JJ; Campos-Delgado DU; Buja LM; Vela D; Jo JA
    Atherosclerosis; 2019 Nov; 290():94-102. PubMed ID: 31604172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Detection of Vulnerable Plaque for Intravascular Optical Coherence Tomography Images.
    Liu R; Zhang Y; Zheng Y; Liu Y; Zhao Y; Yi L
    Cardiovasc Eng Technol; 2019 Dec; 10(4):590-603. PubMed ID: 31535296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.