BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29717581)

  • 21. Clinical Characterization of Coronary Atherosclerosis With Dual-Modality OCT and Near-Infrared Autofluorescence Imaging.
    Ughi GJ; Wang H; Gerbaud E; Gardecki JA; Fard AM; Hamidi E; Vacas-Jacques P; Rosenberg M; Jaffer FA; Tearney GJ
    JACC Cardiovasc Imaging; 2016 Nov; 9(11):1304-1314. PubMed ID: 26971006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic Lumen Segmentation in Intravascular Optical Coherence Tomography Images Using Level Set.
    Cao Y; Cheng K; Qin X; Yin Q; Li J; Zhu R; Zhao W
    Comput Math Methods Med; 2017; 2017():4710305. PubMed ID: 28270857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ex Vivo Assessment of Coronary Atherosclerotic Plaque by Grating-Based Phase-Contrast Computed Tomography: Correlation With Optical Coherence Tomography.
    Habbel C; Hetterich H; Willner M; Herzen J; Steigerwald K; Auweter S; Schüller U; Hausleiter J; Massberg S; Reiser M; Pfeiffer F; Saam T; Bamberg F
    Invest Radiol; 2017 Apr; 52(4):223-231. PubMed ID: 28079701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wall shear stress-related plaque growth of lipid-rich plaques in human coronary arteries: an near-infrared spectroscopy and optical coherence tomography study.
    Hartman EMJ; De Nisco G; Kok AM; Tomaniak M; Nous FMA; Korteland SA; Gijsen FJH; den Dekker WK; Diletti R; van Mieghem NMDA; Wilschut JM; Zijlstra F; van der Steen AFW; Budde RPJ; Daemen J; Wentzel JJ
    Cardiovasc Res; 2023 May; 119(4):1021-1029. PubMed ID: 36575921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Imaging assessment and accuracy in coronary artery autopsy: comparison of frequency-domain optical coherence tomography with intravascular ultrasound and histology.
    Shimokado A; Kubo T; Matsuo Y; Ino Y; Shiono Y; Shimamura K; Katayama Y; Taruya A; Nishiguchi T; Kashiwagi M; Kitabata H; Tanaka A; Hozumi T; Akasaka T
    Int J Cardiovasc Imaging; 2019 Oct; 35(10):1785-1790. PubMed ID: 31175528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coronary Atherosclerosis T
    Xie Y; Kim YJ; Pang J; Kim JS; Yang Q; Wei J; Nguyen CT; Deng Z; Choi BW; Fan Z; Bairey Merz CN; Shah PK; Berman DS; Chang HJ; Li D
    JACC Cardiovasc Imaging; 2017 Jun; 10(6):637-648. PubMed ID: 27743950
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diagnostic Accuracy of 320-Row Computed Tomography for Characterizing Coronary Atherosclerotic Plaques: Comparison with Intravascular Optical Coherence Tomography.
    Ybarra LF; Szarf G; Ishikawa W; Chamié D; Caixeta A; Puri R; Perin MA
    Cardiovasc Revasc Med; 2020 May; 21(5):640-646. PubMed ID: 31501019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracoronary optical coherence tomography: a review of clinical applications.
    Zivelonghi C; Ghione M; Kilickesmez K; Loureiro RE; Foin N; Lindsay A; de Silva R; Ribichini F; Vassanelli C; Di Mario C
    J Cardiovasc Med (Hagerstown); 2014 Jul; 15(7):543-53. PubMed ID: 24922045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Relation Between Red Blood Cell Distribution Width and Coronary Atherosclerotic Plaque Vulnerability Detected by Intracoronary Optical Coherence Tomography.
    Jin P; Wu SJ; Ma Q; Liu W; Zhao YX; Han HY; Hou FJ; Li Y; Zhou YJ
    Curr Vasc Pharmacol; 2022; 20(6):501-507. PubMed ID: 35638281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methodology for fully automated segmentation and plaque characterization in intracoronary optical coherence tomography images.
    Athanasiou LS; Bourantas CV; Rigas G; Sakellarios AI; Exarchos TP; Siogkas PK; Ricciardi A; Naka KK; Papafaklis MI; Michalis LK; Prati F; Fotiadis DI
    J Biomed Opt; 2014 Feb; 19(2):026009. PubMed ID: 24525828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading.
    Celi S; Berti S
    Med Image Anal; 2014 Oct; 18(7):1157-68. PubMed ID: 25077844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical Coherence Tomography in Vulnerable Plaque and Acute Coronary Syndrome.
    Kubo T
    Interv Cardiol Clin; 2023 Apr; 12(2):203-214. PubMed ID: 36922061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical coherence tomography-guided percutaneous coronary intervention: a review of current clinical applications.
    Kurogi K; Ishii M; Yamamoto N; Yamanaga K; Tsujita K
    Cardiovasc Interv Ther; 2021 Apr; 36(2):169-177. PubMed ID: 33454867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images.
    Hu Z; Medioni GG; Hernandez M; Hariri A; Wu X; Sadda SR
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):8375-83. PubMed ID: 24265015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous morphological and biochemical endogenous optical imaging of atherosclerosis.
    Jo JA; Park J; Pande P; Shrestha S; Serafino MJ; Rico Jimenez Jde J; Clubb F; Walton B; Buja LM; Phipps JE; Feldman MD; Adame J; Applegate BE
    Eur Heart J Cardiovasc Imaging; 2015 Aug; 16(8):910-8. PubMed ID: 25722204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fully Automated Lumen Segmentation Method for Intracoronary Optical Coherence Tomography.
    Pociask E; Malinowski KP; Ślęzak M; Jaworek-Korjakowska J; Wojakowski W; Roleder T
    J Healthc Eng; 2018; 2018():1414076. PubMed ID: 30792831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using optical coherence tomography and intravascular ultrasound imaging to quantify coronary plaque cap thickness and vulnerability: a pilot study.
    Lv R; Maehara A; Matsumura M; Wang L; Wang Q; Zhang C; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    Biomed Eng Online; 2020 Nov; 19(1):90. PubMed ID: 33256759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of optical coherence tomography and intravascular ultrasound for evaluation of coronary lipid-rich atherosclerotic plaque progression and regression.
    Xie Z; Tian J; Ma L; Du H; Dong N; Hou J; He J; Dai J; Liu X; Pan H; Liu Y; Yu B
    Eur Heart J Cardiovasc Imaging; 2015 Dec; 16(12):1374-80. PubMed ID: 25911116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets.
    Prabhu D; Bezerra H; Kolluru C; Gharaibeh Y; Mehanna E; Wu H; Wilson D
    J Biomed Opt; 2019 Oct; 24(10):1-15. PubMed ID: 31586357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of coronary plaques and atherosclerosis using optical coherence tomography.
    Shimamura K; Kubo T; Akasaka T
    Expert Rev Cardiovasc Ther; 2021 May; 19(5):379-386. PubMed ID: 33823735
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.