These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29717581)

  • 41. Automatic segmentation of optical coherence tomography pullbacks of coronary arteries treated with bioresorbable vascular scaffolds: Application to hemodynamics modeling.
    Bologna M; Migliori S; Montin E; Rampat R; Dubini G; Migliavacca F; Mainardi L; Chiastra C
    PLoS One; 2019; 14(3):e0213603. PubMed ID: 30870477
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Endothelial shear stress and coronary plaque characteristics in humans: combined frequency-domain optical coherence tomography and computational fluid dynamics study.
    Vergallo R; Papafaklis MI; Yonetsu T; Bourantas CV; Andreou I; Wang Z; Fujimoto JG; McNulty I; Lee H; Biasucci LM; Crea F; Feldman CL; Michalis LK; Stone PH; Jang IK
    Circ Cardiovasc Imaging; 2014 Nov; 7(6):905-11. PubMed ID: 25190591
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography.
    Tanaka A; Tearney GJ; Bouma BE
    J Biomed Opt; 2010; 15(1):011104. PubMed ID: 20210430
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automated lipid-rich plaque detection with short wavelength infra-red OCT system.
    Shimokado A; Kubo T; Nishiguchi T; Katayama Y; Taruya A; Ohta S; Kashiwagi M; Shimamura K; Kuroi A; Kameyama T; Shiono Y; Yamano T; Matsuo Y; Kitabata H; Ino Y; Hozumi T; Tanaka A; Akasaka T
    Eur Heart J Cardiovasc Imaging; 2018 Oct; 19(10):1174-1178. PubMed ID: 29186546
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: a comparison to optical coherence tomography.
    Nakazato R; Otake H; Konishi A; Iwasaki M; Koo BK; Fukuya H; Shinke T; Hirata K; Leipsic J; Berman DS; Min JK
    Eur Heart J Cardiovasc Imaging; 2015 Apr; 16(4):373-9. PubMed ID: 25246503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage.
    Ughi GJ; Adriaenssens T; Onsea K; Kayaert P; Dubois C; Sinnaeve P; Coosemans M; Desmet W; D'hooge J
    Int J Cardiovasc Imaging; 2012 Feb; 28(2):229-41. PubMed ID: 21347593
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-dimensional morphological response of lipid-rich coronary plaques to statin therapy: a serial optical coherence tomography study.
    Wang Z; Cho YS; Soeda T; Minami Y; Xing L; Jia H; Aguirre A; Vergallo R; Lee H; Fujimoto JG; Yu B; Jang IK
    Coron Artery Dis; 2016 Aug; 27(5):350-6. PubMed ID: 27105047
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rupture of a Vulnerable Plaque in a Hazy Angiographic Culprit Lesion During Acute Coronary Syndrome.
    Cereda A; Sticchi A; Toselli M; Sangiorgi GM; Giannini F; Colombo A; Mangieri A
    J Invasive Cardiol; 2021 Jun; 33(6):E487-E488. PubMed ID: 34089312
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hyperintense plaque identified by magnetic resonance imaging relates to intracoronary thrombus as detected by optical coherence tomography in patients with angina pectoris.
    Ehara S; Hasegawa T; Nakata S; Matsumoto K; Nishimura S; Iguchi T; Kataoka T; Yoshikawa J; Yoshiyama M
    Eur Heart J Cardiovasc Imaging; 2012 May; 13(5):394-9. PubMed ID: 22277117
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fusion of fibrous cap thickness and wall shear stress to assess plaque vulnerability in coronary arteries: a pilot study.
    Zahnd G; Schrauwen J; Karanasos A; Regar E; Niessen W; van Walsum T; Gijsen F
    Int J Comput Assist Radiol Surg; 2016 Oct; 11(10):1779-90. PubMed ID: 27236652
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography.
    Nam HS; Song JW; Jang SJ; Lee JJ; Oh WY; Kim JW; Yoo H
    J Biomed Opt; 2016 Jul; 21(7):75004. PubMed ID: 27391375
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optical Coherence Tomography to Evaluate Plaque Burden and Morphology in Patients With Takotsubo Syndrome.
    Eitel I; Stiermaier T; Graf T; Möller C; Rommel KP; Eitel C; Schuler G; Thiele H; Desch S
    J Am Heart Assoc; 2016 Dec; 5(12):. PubMed ID: 28007746
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Type 2 diabetes mellitus is associated with a lower fibrous cap thickness but has no impact on calcification morphology: an intracoronary optical coherence tomography study.
    Milzi A; Burgmaier M; Burgmaier K; Hellmich M; Marx N; Reith S
    Cardiovasc Diabetol; 2017 Dec; 16(1):152. PubMed ID: 29195505
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predictors for layered coronary plaques: an optical coherence tomography study.
    Araki M; Yonetsu T; Russo M; Kurihara O; Kim HO; Shinohara H; Thondapu V; Soeda T; Minami Y; Higuma T; Lee H; Kakuta T; Jang IK
    J Thromb Thrombolysis; 2020 Nov; 50(4):886-894. PubMed ID: 32306291
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plaque burden can be assessed using intravascular optical coherence tomography and a dedicated automated processing algorithm: a comparison study with intravascular ultrasound.
    Gerbaud E; Weisz G; Tanaka A; Luu R; Osman HASH; Baldwin G; Coste P; Cognet L; Waxman S; Zheng H; Moses JW; Mintz GS; Akasaka T; Maehara A; Tearney GJ
    Eur Heart J Cardiovasc Imaging; 2020 Jun; 21(6):640-652. PubMed ID: 31326995
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography.
    Wieringa WG; Lexis CP; Lipsic E; van der Werf HW; Burgerhof JG; Hagens VE; Bartels GL; Broersen A; Schurer RA; Tan ES; van der Harst P; van den Heuvel AF; Willems TP; Pundziute G
    J Cardiovasc Comput Tomogr; 2017; 11(2):111-118. PubMed ID: 28169175
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Combined Optical Coherence Tomography and Intravascular Ultrasound Study on Plaque Rupture, Plaque Erosion, and Calcified Nodule in Patients With ST-Segment Elevation Myocardial Infarction: Incidence, Morphologic Characteristics, and Outcomes After Percutaneous Coronary Intervention.
    Higuma T; Soeda T; Abe N; Yamada M; Yokoyama H; Shibutani S; Vergallo R; Minami Y; Ong DS; Lee H; Okumura K; Jang IK
    JACC Cardiovasc Interv; 2015 Aug; 8(9):1166-1176. PubMed ID: 26117464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plaque vulnerability at non-culprit lesions in obese patients with coronary artery disease: Frequency-domain optical coherence tomography analysis.
    Kataoka Y; Hammadah M; Puri R; Duggal B; Uno K; Kapadia SR; Tuzcu EM; Nissen SE; Nicholls SJ
    Eur J Prev Cardiol; 2015 Oct; 22(10):1331-9. PubMed ID: 26232281
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo optical coherence tomography imaging and histopathology of healed coronary plaques.
    Shimokado A; Matsuo Y; Kubo T; Nishiguchi T; Taruya A; Teraguchi I; Shiono Y; Orii M; Tanimoto T; Yamano T; Ino Y; Hozumi T; Tanaka A; Muragaki Y; Akasaka T
    Atherosclerosis; 2018 Aug; 275():35-42. PubMed ID: 29859471
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic atherosclerotic heart disease detection in intracoronary optical coherence tomography images.
    Xu M; Cheng J; Wong DW; Taruya A; Tanaka A; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():174-7. PubMed ID: 25569925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.