These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29717718)

  • 1. Density and electron density of aqueous cryoprotectant solutions at cryogenic temperatures for optimized cryoprotection and diffraction contrast.
    Tyree TJ; Dan R; Thorne RE
    Acta Crystallogr D Struct Biol; 2018 May; 74(Pt 5):471-479. PubMed ID: 29717718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal contraction of aqueous glycerol and ethylene glycol solutions for optimized protein-crystal cryoprotection.
    Shen C; Julius EF; Tyree TJ; Moreau DW; Atakisi H; Thorne RE
    Acta Crystallogr D Struct Biol; 2016 Jun; 72(Pt 6):742-52. PubMed ID: 27303794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the Densities of Aqueous Glasses at Cryogenic Temperatures.
    Shen C; Julius EF; Tyree TJ; Dan R; Moreau DW; Thorne R
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28715388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical macromolecular cryocrystallography.
    Pflugrath JW
    Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):622-42. PubMed ID: 26057787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of Thermal Conductivities of Two Cryoprotective Agent Solutions for Vitreous Cryopreservation of Organs at the Temperature Range of 77 K-300 K Using a Thermal Sensor Made of Microscale Enamel Copper Wire.
    Li Y; Zhao G; Hossain SMC; Panhwar F; Sun W; Kong F; Zang C; Jiang Z
    Biopreserv Biobank; 2017 Jun; 15(3):228-233. PubMed ID: 28051325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong isotope effects on melting dynamics and ice crystallisation processes in cryo vitrification solutions.
    Kirichek O; Soper A; Dzyuba B; Callear S; Fuller B
    PLoS One; 2015; 10(3):e0120611. PubMed ID: 25815751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical prediction of the vitrifiability and glass stability of multi-component cryoprotective agent solutions.
    Weiss AD; Forbes JF; Scheuerman A; Law GK; Elliott JA; McGann LE; Jomha NM
    Cryobiology; 2010 Aug; 61(1):123-7. PubMed ID: 20558152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercooling and vitrification of aqueous glycerol solutions at normal and high pressures.
    Miyata K; Hayakawa S; Kajiwara K; Kanno H
    Cryobiology; 2012 Oct; 65(2):113-6. PubMed ID: 22609515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calorimetric Studies on Thermal Properties of Nano-Cryoprotectant Solutions during Vitrification.
    Xu HF; Hao BT; Liu LJ; Tang LL; Liu BL
    Cryo Letters; 2016; 37(6):406-410. PubMed ID: 28072427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a vitrification-based cryopreservation protocol for the coral Pocillopora damicornis L.: Tolerance of tissue balls to 4.5 M cryoprotectant solutions.
    Feuillassier L; Masanet P; Romans P; Barthélémy D; Engelmann F
    Cryobiology; 2015 Oct; 71(2):224-35. PubMed ID: 26188079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitrification Ability of Combined and Single Cryoprotective Agents.
    Faltus M; Bilavcik A; Zamecnik J
    Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predict the glass transition temperature of glycerol-water binary cryoprotectant by molecular dynamic simulation.
    Li DX; Liu BL; Liu YS; Chen CL
    Cryobiology; 2008 Apr; 56(2):114-9. PubMed ID: 18190903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryoprotective agent toxicity interactions in human articular chondrocytes.
    Almansoori KA; Prasad V; Forbes JF; Law GK; McGann LE; Elliott JA; Jomha NM
    Cryobiology; 2012 Jun; 64(3):185-91. PubMed ID: 22274740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of channel catfish with sperm cryopreserved by rapid non-equilibrium cooling.
    Cuevas-Uribe R; Leibo SP; Daly J; Tiersch TR
    Cryobiology; 2011 Dec; 63(3):186-97. PubMed ID: 21896271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryopreservation of Mammalian Oocytes: Slow Cooling and Vitrification as Successful Methods for Cryogenic Storage.
    Keros V; Fuller BJ
    Methods Mol Biol; 2021; 2180():437-454. PubMed ID: 32797426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple cryoprotectant toxicity model for vitrification solution optimization.
    Warner RM; Brown KS; Benson JD; Eroglu A; Higgins AZ
    Cryobiology; 2022 Oct; 108():1-9. PubMed ID: 36113568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane permeabilization of phosphatidylcholine liposomes induced by cryopreservation and vitrification solutions.
    Sydykov B; Oldenhof H; de Oliveira Barros L; Sieme H; Wolkers WF
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):467-474. PubMed ID: 29100892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Japanese flounder (Paralichthys olivaceus) embryos are difficult to cryopreserve by vitrification.
    Edashige K; Valdez DM; Hara T; Saida N; Seki S; Kasai M
    Cryobiology; 2006 Aug; 53(1):96-106. PubMed ID: 16750523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conductivity of the cryoprotective cocktail DP6 in cryogenic temperatures, in the presence and absence of synthetic ice modulators.
    Ehrlich LE; Malen JA; Rabin Y
    Cryobiology; 2016 Oct; 73(2):196-202. PubMed ID: 27471057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquidus Tracking: Large scale preservation of encapsulated 3-D cell cultures using a vitrification machine.
    Puschmann E; Selden C; Butler S; Fuller B
    Cryobiology; 2017 Jun; 76():65-73. PubMed ID: 28442251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.