These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1489 related articles for article (PubMed ID: 29717933)
1. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Yamamoto M; Kensler TW; Motohashi H Physiol Rev; 2018 Jul; 98(3):1169-1203. PubMed ID: 29717933 [TBL] [Abstract][Full Text] [Related]
2. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. Suzuki T; Yamamoto M J Biol Chem; 2017 Oct; 292(41):16817-16824. PubMed ID: 28842501 [TBL] [Abstract][Full Text] [Related]
3. Beyond repression of Nrf2: An update on Keap1. Kopacz A; Kloska D; Forman HJ; Jozkowicz A; Grochot-Przeczek A Free Radic Biol Med; 2020 Sep; 157():63-74. PubMed ID: 32234331 [TBL] [Abstract][Full Text] [Related]
4. An Overview of the Advantages of KEAP1-NRF2 System Activation During Inflammatory Disease Treatment. Keleku-Lukwete N; Suzuki M; Yamamoto M Antioxid Redox Signal; 2018 Dec; 29(17):1746-1755. PubMed ID: 28899203 [TBL] [Abstract][Full Text] [Related]
5. The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Uruno A; Motohashi H Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624 [TBL] [Abstract][Full Text] [Related]
6. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease. Dayalan Naidu S; Dinkova-Kostova AT Open Biol; 2020 Jun; 10(6):200105. PubMed ID: 32574549 [TBL] [Abstract][Full Text] [Related]
7. Measuring the Interaction of Transcription Factor Nrf2 with Its Negative Regulator Keap1 in Single Live Cells by an Improved FRET/FLIM Analysis. Dikovskaya D; Appleton PL; Bento-Pereira C; Dinkova-Kostova AT Chem Res Toxicol; 2019 Mar; 32(3):500-512. PubMed ID: 30793592 [TBL] [Abstract][Full Text] [Related]
8. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Taguchi K; Fujikawa N; Komatsu M; Ishii T; Unno M; Akaike T; Motohashi H; Yamamoto M Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13561-6. PubMed ID: 22872865 [TBL] [Abstract][Full Text] [Related]
9. From germ cells to neonates: the beginning of life and the KEAP1-NRF2 system. Matsumaru D; Motohashi H J Biochem; 2020 Feb; 167(2):133-138. PubMed ID: 31518425 [TBL] [Abstract][Full Text] [Related]
10. The Role of NRF2/KEAP1 Signaling Pathway in Cancer Metabolism. Song MY; Lee DY; Chun KS; Kim EH Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922165 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Tebay LE; Robertson H; Durant ST; Vitale SR; Penning TM; Dinkova-Kostova AT; Hayes JD Free Radic Biol Med; 2015 Nov; 88(Pt B):108-146. PubMed ID: 26122708 [TBL] [Abstract][Full Text] [Related]
12. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Dinkova-Kostova AT; Kostov RV; Canning P Arch Biochem Biophys; 2017 Mar; 617():84-93. PubMed ID: 27497696 [TBL] [Abstract][Full Text] [Related]
13. Molecular Basis of the KEAP1-NRF2 Signaling Pathway. Suzuki T; Takahashi J; Yamamoto M Mol Cells; 2023 Mar; 46(3):133-141. PubMed ID: 36994473 [TBL] [Abstract][Full Text] [Related]
14. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound. Ohnuma T; Nakayama S; Anan E; Nishiyama T; Ogura K; Hiratsuka A Toxicol Appl Pharmacol; 2010 Apr; 244(1):27-36. PubMed ID: 20026152 [TBL] [Abstract][Full Text] [Related]
15. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update. Lu MC; Ji JA; Jiang ZY; You QD Med Res Rev; 2016 Sep; 36(5):924-63. PubMed ID: 27192495 [TBL] [Abstract][Full Text] [Related]
16. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Bollong MJ; Lee G; Coukos JS; Yun H; Zambaldo C; Chang JW; Chin EN; Ahmad I; Chatterjee AK; Lairson LL; Schultz PG; Moellering RE Nature; 2018 Oct; 562(7728):600-604. PubMed ID: 30323285 [TBL] [Abstract][Full Text] [Related]
17. Discovery of a Potent Kelch-Like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Protein-Protein Interaction Inhibitor with Natural Proline Structure as a Cytoprotective Agent against Acetaminophen-Induced Hepatotoxicity. Lu MC; Zhang X; Wu F; Tan SJ; Zhao J; You QD; Jiang ZY J Med Chem; 2019 Jul; 62(14):6796-6813. PubMed ID: 31283229 [TBL] [Abstract][Full Text] [Related]
18. A Point Mutation at C151 of Gatbonton-Schwager T; Yagishita Y; Joshi T; Wakabayashi N; Srinivasan H; Suzuki T; Yamamoto M; Kensler TW Mol Pharmacol; 2023 Aug; 104(2):51-61. PubMed ID: 37188495 [TBL] [Abstract][Full Text] [Related]
19. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Itoh K; Mimura J; Yamamoto M Antioxid Redox Signal; 2010 Dec; 13(11):1665-78. PubMed ID: 20446768 [TBL] [Abstract][Full Text] [Related]
20. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Baird L; Yamamoto M Mol Cell Biol; 2020 Jun; 40(13):. PubMed ID: 32284348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]