These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29718032)

  • 1. Revealing the principal attributes of protein adsorption on block copolymer surfaces with direct experimental evidence at the single protein level.
    Xie T; Chattoraj J; Mulcahey PJ; Kelleher NP; Del Gado E; Hahm JI
    Nanoscale; 2018 May; 10(19):9063-9076. PubMed ID: 29718032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct adsorption configurations and self-assembly characteristics of fibrinogen on chemically uniform and alternating surfaces including block copolymer nanodomains.
    Song S; Ravensbergen K; Alabanza A; Soldin D; Hahm JI
    ACS Nano; 2014 May; 8(5):5257-69. PubMed ID: 24708538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinctive Adsorption Mechanism and Kinetics of Immunoglobulin G on a Nanoscale Polymer Surface.
    Cho DH; Xie T; Mulcahey PJ; Kelleher NP; Hahm JI
    Langmuir; 2022 Feb; 38(4):1458-1470. PubMed ID: 35037456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Assembly Configurations and Packing Preferences of Fibrinogen Mediated by the Periodicity and Alignment Control of Block Copolymer Nanodomains.
    Xie T; Vora A; Mulcahey PJ; Nanescu SE; Singh M; Choi DS; Huang JK; Liu CC; Sanders DP; Hahm JI
    ACS Nano; 2016 Aug; 10(8):7705-20. PubMed ID: 27462904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale protein arrays of rich morphologies via self-assembly on chemically treated diblock copolymer surfaces.
    Song S; Milchak M; Zhou H; Lee T; Hanscom M; Hahm JI
    Nanotechnology; 2013 Mar; 24(9):095601. PubMed ID: 23395956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembled Block Copolymers as a Facile Pathway to Create Functional Nanobiosensor and Nanobiomaterial Surfaces.
    Sytu MRC; Cho DH; Hahm JI
    Polymers (Basel); 2024 May; 16(9):. PubMed ID: 38732737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascertaining effects of nanoscale polymeric interfaces on competitive protein adsorption at the individual protein level.
    Song S; Xie T; Ravensbergen K; Hahm JI
    Nanoscale; 2016 Feb; 8(6):3496-509. PubMed ID: 26794230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of protein-surface interactions on nanopatterned polymer films.
    Lau KH; Bang J; Hawker CJ; Kim DH; Knoll W
    Biomacromolecules; 2009 May; 10(5):1061-6. PubMed ID: 19301909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption behaviour of amphiphilic polymers at hydrophobic surfaces: effects on protein adsorption.
    Freij-Larsson C; Nylander T; Jannasch P; Wesslén B
    Biomaterials; 1996 Nov; 17(22):2199-207. PubMed ID: 8922606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting Chemistry of Block Copolymer Films Controls the Dynamics of Protein Self-Assembly at the Nanoscale.
    Stel B; Gunkel I; Gu X; Russell TP; De Yoreo JJ; Lingenfelder M
    ACS Nano; 2019 Apr; 13(4):4018-4027. PubMed ID: 30917283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology and protein adsorption characteristics of block copolymer surfaces.
    Palacio M; Schricker S; Bhushan B
    J Microsc; 2010 Dec; 240(3):239-48. PubMed ID: 21077884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance for real time in situ analysis of protein adsorption to polymer surfaces.
    Green RJ; Davies J; Davies MC; Roberts CJ; Tendler SJ
    Biomaterials; 1997 Mar; 18(5):405-13. PubMed ID: 9061181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative evaluation of interaction force of fibrinogen at well-defined surfaces with various structures.
    Chen W; Inoue Y; Ishihara K
    J Biomater Sci Polym Ed; 2014; 25(14-15):1629-40. PubMed ID: 25025547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of biomimetic hydroxyapatite deposition on polymer substrates using different protein adsorption abilities.
    Iijima K; Sakai A; Komori A; Sakamoto Y; Matsuno H; Serizawa T; Hashizume M
    Colloids Surf B Biointerfaces; 2015 Jun; 130():77-83. PubMed ID: 25909182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the distribution of adsorbed proteins on cellular adhesion behaviors using surfaces of nanoscale phase-reversed amphiphilic block copolymers.
    Hiraguchi Y; Nagahashi K; Shibayama T; Hayashi T; Yano TA; Kushiro K; Takai M
    Acta Biomater; 2014 Jul; 10(7):2988-95. PubMed ID: 24690479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing protein adsorption with polymer-grafted hyaluronic acid coatings.
    Ramadan MH; Prata JE; Karácsony O; Dunér G; Washburn NR
    Langmuir; 2014 Jul; 30(25):7485-95. PubMed ID: 24892924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Adsorption on Chemically Modified Block Copolymer Nanodomains: Influence of Charge and Flow.
    Silverstein JS; Casey BJ; Kofinas P; Dair BJ
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1460-70. PubMed ID: 27433605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of protein adsorption behavior on polymeric surfaces: toward high-density, high-payload protein templates.
    Kumar N; Parajuli O; Gupta A; Hahm JI
    Langmuir; 2008 Mar; 24(6):2688-94. PubMed ID: 18225924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing nanostructured block copolymer surfaces to control protein adhesion.
    Schricker SR; Palacio ML; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2012 May; 370(1967):2348-80. PubMed ID: 22509062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.