BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29718217)

  • 1. Detection of genome-edited cells by oligoribonucleotide interference-PCR.
    Fujita T; Yuno M; Kitaura F; Fujii H
    DNA Res; 2018 Aug; 25(4):395-407. PubMed ID: 29718217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A refined two-step oligoribonucleotide interference-PCR method for precise discrimination of nucleotide differences.
    Fujita T; Yuno M; Kitaura F; Fujii H
    Sci Rep; 2018 Nov; 8(1):17195. PubMed ID: 30464194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of CpG Methylation Status and Nucleotide Differences in Tissue Specimen DNA by Oligoribonucleotide Interference-PCR.
    Shimizu T; Fujita T; Fukushi S; Horino Y; Fujii H
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32698480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target enrichment from a DNA mixture by oligoribonucleotide interference-PCR (ORNi-PCR).
    Fujita T; Motooka D; Fujii H
    Biol Methods Protoc; 2019; 4(1):bpz009. PubMed ID: 32395627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligoribonucleotide interference-PCR: principles and applications.
    Shimizu T; Fujita T; Fujii H
    Biol Methods Protoc; 2022; 7(1):bpac010. PubMed ID: 35664805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligoribonucleotide (ORN) interference-PCR (ORNi-PCR): a simple method for suppressing PCR amplification of specific DNA sequences using ORNs.
    Tanigawa N; Fujita T; Fujii H
    PLoS One; 2014; 9(11):e113345. PubMed ID: 25405983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Detection of the T790M and L858R Mutations in the
    Baba K; Fujita T; Tasaka S; Fujii H
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31426517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligoribonucleotide-Mediated Blockade of DNA Extension by
    Fujita T; Nagata S; Fujii H
    Anal Chem; 2023 Feb; 95(6):3442-3451. PubMed ID: 36738294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction.
    Peng C; Wang H; Xu X; Wang X; Chen X; Wei W; Lai Y; Liu G; Godwin ID; Li J; Zhang L; Xu J
    Plant J; 2018 Aug; 95(3):557-567. PubMed ID: 29761864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Step qPCR and dPCR Detection of Diverse CRISPR-Cas9 Gene Editing Events
    Falabella M; Sun L; Barr J; Pena AZ; Kershaw EE; Gingras S; Goncharova EA; Kaufman BA
    G3 (Bethesda); 2017 Oct; 7(10):3533-3542. PubMed ID: 28860183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas.
    Horii T; Hatada I
    Endocr J; 2016; 63(3):213-9. PubMed ID: 26743444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes.
    Liang Z; Chen K; Yan Y; Zhang Y; Gao C
    Plant Biotechnol J; 2018 Dec; 16(12):2053-2062. PubMed ID: 29723918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases.
    Mock U; Hauber I; Fehse B
    Nat Protoc; 2016 Mar; 11(3):598-615. PubMed ID: 26914317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genome editing revolution: A CRISPR-Cas TALE off-target story.
    Stella S; Montoya G
    Bioessays; 2016 Jul; 38 Suppl 1():S4-S13. PubMed ID: 27417121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Editing in Human Lymphoid Cells: Role for Donor DNA, Type of Genomic Nuclease and Cell Selection Method.
    Zotova A; Lopatukhina E; Filatov A; Khaitov M; Mazurov D
    Viruses; 2017 Nov; 9(11):. PubMed ID: 29099045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-Based Genome Editing in Plants.
    Zhang Y; Ma X; Xie X; Liu YG
    Prog Mol Biol Transl Sci; 2017; 149():133-150. PubMed ID: 28712494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon.
    Cheng F; Gong L; Zhao D; Yang H; Zhou J; Li M; Xiang H
    J Genet Genomics; 2017 Nov; 44(11):541-548. PubMed ID: 29169919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.