These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 29718338)
1. BCseq: accurate single cell RNA-seq quantification with bias correction. Chen L; Zheng S Nucleic Acids Res; 2018 Aug; 46(14):e82. PubMed ID: 29718338 [TBL] [Abstract][Full Text] [Related]
2. Detection of high variability in gene expression from single-cell RNA-seq profiling. Chen HI; Jin Y; Huang Y; Chen Y BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924 [TBL] [Abstract][Full Text] [Related]
3. Random forest based similarity learning for single cell RNA sequencing data. Pouyan MB; Kostka D Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006 [TBL] [Abstract][Full Text] [Related]
4. Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data. Jia C; Hu Y; Kelly D; Kim J; Li M; Zhang NR Nucleic Acids Res; 2017 Nov; 45(19):10978-10988. PubMed ID: 29036714 [TBL] [Abstract][Full Text] [Related]
5. Data Analysis in Single-Cell Transcriptome Sequencing. Gao S Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451 [TBL] [Abstract][Full Text] [Related]
6. Quality Control of Single-Cell RNA-seq. Jiang P Methods Mol Biol; 2019; 1935():1-9. PubMed ID: 30758816 [TBL] [Abstract][Full Text] [Related]
7. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis. Wu H; Kirita Y; Donnelly EL; Humphreys BD J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133 [TBL] [Abstract][Full Text] [Related]
8. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis. Xu X; Yu X; Hu G; Wang K; Zhang J; Li X Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35821114 [TBL] [Abstract][Full Text] [Related]
10. Single cell RNA-seq data clustering using TF-IDF based methods. Moussa M; Măndoiu II BMC Genomics; 2018 Aug; 19(Suppl 6):569. PubMed ID: 30367575 [TBL] [Abstract][Full Text] [Related]
11. Debiased personalized gene coexpression networks for population-scale scRNA-seq data. Lu S; Keleş S Genome Res; 2023 Jun; 33(6):932-947. PubMed ID: 37295843 [TBL] [Abstract][Full Text] [Related]
12. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa. Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593 [TBL] [Abstract][Full Text] [Related]
13. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data. Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142 [TBL] [Abstract][Full Text] [Related]
15. Analysis of Technical and Biological Variability in Single-Cell RNA Sequencing. Kim B; Lee E; Kim JK Methods Mol Biol; 2019; 1935():25-43. PubMed ID: 30758818 [TBL] [Abstract][Full Text] [Related]
16. Linnorm: improved statistical analysis for single cell RNA-seq expression data. Yip SH; Wang P; Kocher JA; Sham PC; Wang J Nucleic Acids Res; 2017 Dec; 45(22):e179. PubMed ID: 28981748 [TBL] [Abstract][Full Text] [Related]
17. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries. Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484 [TBL] [Abstract][Full Text] [Related]
18. Using BRIE to Detect and Analyze Splicing Isoforms in scRNA-Seq Data. Huang Y; Sanguinetti G Methods Mol Biol; 2019; 1935():175-185. PubMed ID: 30758827 [TBL] [Abstract][Full Text] [Related]
19. Detecting Fear-Memory-Related Genes from Neuronal scRNA-seq Data by Diverse Distributions and Bhattacharyya Distance. Zhang S; Xie L; Cui Y; Carone BR; Chen Y Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36009024 [TBL] [Abstract][Full Text] [Related]
20. Impact of sequencing depth and read length on single cell RNA sequencing data of T cells. Rizzetto S; Eltahla AA; Lin P; Bull R; Lloyd AR; Ho JWK; Venturi V; Luciani F Sci Rep; 2017 Oct; 7(1):12781. PubMed ID: 28986563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]