BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29718669)

  • 21. Dynamic Wetting of Photoresponsive Arylazopyrazole Monolayers is Controlled by the Molecular Kinetics of the Monolayer.
    Honnigfort C; Topp L; García Rey N; Heuer A; Braunschweig B
    J Am Chem Soc; 2022 Mar; 144(9):4026-4038. PubMed ID: 35212522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. When Bulk Matters: Disentanglement of the Role of Polyelectrolyte/Surfactant Complexes at Surfaces and in the Bulk of Foam Films.
    Braun L; von Klitzing R
    Langmuir; 2023 Jan; 39(1):111-118. PubMed ID: 36525629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of Ostwald ripening by using surfactants with high surface modulus.
    Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of surfactant concentration on the responsiveness of a thermoresponsive copolymer/surfactant mixture with potential application on "Smart" foams formulations.
    Lencina MMS; Fernández Miconi E; Fernández Leyes MD; Domínguez C; Cuenca E; Ritacco HA
    J Colloid Interface Sci; 2018 Feb; 512():455-465. PubMed ID: 29096106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Specific salt and pH effects on foam film of a pH sensitive surfactant.
    Micheau C; Bauduin P; Diat O; Faure S
    Langmuir; 2013 Jul; 29(27):8472-81. PubMed ID: 23758636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoresponsive aqueous foams with controllable stability from nonionic azobenzene surfactants in multiple-component systems.
    Chen S; Fei L; Ge F; Wang C
    Soft Matter; 2019 Oct; 15(41):8313-8319. PubMed ID: 31565724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pH effects on the molecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology.
    Engelhardt K; Lexis M; Gochev G; Konnerth C; Miller R; Willenbacher N; Peukert W; Braunschweig B
    Langmuir; 2013 Sep; 29(37):11646-55. PubMed ID: 23961700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CO
    Wang J; Liang M; Tian Q; Feng Y; Yin H; Lu G
    J Colloid Interface Sci; 2018 Aug; 523():65-74. PubMed ID: 29609125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imidazolium based ionic liquid stabilized foams for conformance control: bulk and porous scale investigation.
    Sakthivel S; Babu Salin R
    RSC Adv; 2021 Sep; 11(47):29711-29727. PubMed ID: 35479573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disjoining pressure study of formamide foam films stabilized by surfactants.
    Andersson G; Carey E; Stubenrauch C
    Langmuir; 2010 Jun; 26(11):7752-60. PubMed ID: 20218554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction forces between bubbles in the presence of novel responsive peptide surfactants.
    Balasuriya TS; Dagastine RR
    Langmuir; 2012 Dec; 28(50):17230-7. PubMed ID: 23181754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mixed layers of β-lactoglobulin and SDS at air-water interfaces with tunable intermolecular interactions.
    Engelhardt K; Weichsel U; Kraft E; Segets D; Peukert W; Braunschweig B
    J Phys Chem B; 2014 Apr; 118(15):4098-105. PubMed ID: 24678897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase behavior and interfacial properties of a switchable ethoxylated amine surfactant at high temperature and effects on CO2-in-water foams.
    Chen Y; Elhag AS; Reddy PP; Chen H; Cui L; Worthen AJ; Ma K; Quintanilla H; Noguera JA; Hirasaki GJ; Nguyen QP; Biswal SL; Johnston KP
    J Colloid Interface Sci; 2016 May; 470():80-91. PubMed ID: 26930543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photofoams: remote control of foam destabilization by exposure to light using an azobenzene surfactant.
    Chevallier E; Monteux C; Lequeux F; Tribet C
    Langmuir; 2012 Feb; 28(5):2308-12. PubMed ID: 22280317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability.
    Czakaj A; Kannan A; Wiśniewska A; Grześ G; Krzan M; Warszyński P; Fuller GG
    Soft Matter; 2020 Apr; 16(16):3981-3990. PubMed ID: 32250379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal Stability of Gel Foams Stabilized by Xanthan Gum, Silica Nanoparticles and Surfactants.
    Sheng Y; Yan C; Li Y; Peng Y; Ma L; Wang Q
    Gels; 2021 Oct; 7(4):. PubMed ID: 34698155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current applications of foams formed from mixed surfactant-polymer solutions.
    Bureiko A; Trybala A; Kovalchuk N; Starov V
    Adv Colloid Interface Sci; 2015 Aug; 222():670-7. PubMed ID: 25455806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On how hydrogen bonds affect foam stability.
    Stubenrauch C; Hamann M; Preisig N; Chauhan V; Bordes R
    Adv Colloid Interface Sci; 2017 Sep; 247():435-443. PubMed ID: 28347413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlation in the properties of aqueous single films and foam containing a nonionic surfactant and organic/inorganic electrolytes.
    Karakashev SI; Manev ED
    J Colloid Interface Sci; 2003 Mar; 259(1):171-9. PubMed ID: 12651146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of pH on the interfacial behaviour of Quillaja bark saponin at the air-solution interface.
    Ulaganathan V; Del Castillo L; Webber JL; Ho TTM; Ferri JK; Krasowska M; Beattie DA
    Colloids Surf B Biointerfaces; 2019 Apr; 176():412-419. PubMed ID: 30665095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.