BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29718669)

  • 41. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.
    Xue Z; Worthen A; Qajar A; Robert I; Bryant SL; Huh C; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2016 Jan; 461():383-395. PubMed ID: 26414421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Segregation
    Mansour OT; Cattoz B; Beaube M; Heenan RK; Schweins R; Hurcom J; Griffiths PC
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960093
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carbon Soot-Ionic Surfactant Mixed Layers at Water/Air Interfaces.
    Zabiegaj D; Santini E; Guzmán E; Ferrari M; Liggieri L; Ravera F
    J Nanosci Nanotechnol; 2015 May; 15(5):3618-25. PubMed ID: 26504984
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoinduced demulsification of emulsions using a photoresponsive gemini surfactant.
    Takahashi Y; Fukuyasu K; Horiuchi T; Kondo Y; Stroeve P
    Langmuir; 2014 Jan; 30(1):41-7. PubMed ID: 24354334
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CO
    Wang Z; Ren G; Yang J; Xu Z; Sun D
    J Colloid Interface Sci; 2019 Feb; 536():381-388. PubMed ID: 30380437
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Behavior of cationic surfactants and short chain alcohols in mixed surface layers at water-air and polymer-water interfaces with regard to polymer wettability. I. Adsorption at water-air interface.
    Zdziennicka A; Jańczuk B
    J Colloid Interface Sci; 2010 Sep; 349(1):374-83. PubMed ID: 20538282
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of interface modification on forces in foam films and wetting films.
    v Klitzing R
    Adv Colloid Interface Sci; 2005 Jun; 114-115():253-66. PubMed ID: 15936294
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Particle stabilized aqueous foams at different length scales: synergy between silica particles and alkylamines.
    Carl A; Bannuscher A; von Klitzing R
    Langmuir; 2015 Feb; 31(5):1615-22. PubMed ID: 25549277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of the cationic headgroup to conformational changes undergone by shorter alkyl chain surfactant and water molecules at the air-liquid interface.
    Khan MR; Premadasa UI; Cimatu KLA
    J Colloid Interface Sci; 2020 May; 568():221-233. PubMed ID: 32088452
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modelling the interfacial behaviour of dilute light-switching surfactant solutions.
    Herdes C; Santiso EE; James C; Eastoe J; Müller EA
    J Colloid Interface Sci; 2015 May; 445():16-23. PubMed ID: 25594882
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical control of surface forces and instabilities in foam films using photosurfactants.
    Mamane A; Chevallier E; Olanier L; Lequeux F; Monteux C
    Soft Matter; 2017 Feb; 13(6):1299-1305. PubMed ID: 28111682
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Insight on Methane Foam Stability and Texture via Adsorption of Surfactants on Oppositely Charged Nanoparticles.
    Doroudian Rad M; Telmadarreie A; Xu L; Dong M; Bryant SL
    Langmuir; 2018 Nov; 34(47):14274-14285. PubMed ID: 30372614
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure-Performance Relationships for Tail Substituted Zwitterionic Betaine-Azobenzene Surfactants.
    Butler CSG; Giles LW; Sokolova AV; de Campo L; Tabor RF; Tuck KL
    Langmuir; 2022 Jun; 38(24):7522-7534. PubMed ID: 35678153
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polysaccharide/Surfactant complexes at the air-water interface - effect of the charge density on interfacial and foaming behaviors.
    Ropers MH; Novales B; Boué F; Axelos MA
    Langmuir; 2008 Nov; 24(22):12849-57. PubMed ID: 18950205
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface adsorption of oppositely charged C14TAB-PAMPS mixtures at the air/water interface and the impact on foam film stability.
    Fauser H; von Klitzing R; Campbell RA
    J Phys Chem B; 2015 Jan; 119(1):348-58. PubMed ID: 25474720
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanisms behind the stabilizing action of cellulose nanofibrils in wet-stable cellulose foams.
    Cervin NT; Johansson E; Benjamins JW; Wågberg L
    Biomacromolecules; 2015 Mar; 16(3):822-31. PubMed ID: 25635472
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reversible active switching of the mechanical properties of a peptide film at a fluid-fluid interface.
    Dexter AF; Malcolm AS; Middelberg AP
    Nat Mater; 2006 Jun; 5(6):502-6. PubMed ID: 16715085
    [TBL] [Abstract][Full Text] [Related]  

  • 59. pH-responsive fatty acid self-assembly transition induced by UV light.
    Arnould A; Gaillard C; Fameau AL
    J Colloid Interface Sci; 2015 Nov; 458():147-54. PubMed ID: 26210918
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Additives on the Foam Behavior of Aviation Coolants: Tendency, Stability, and Defoaming.
    Mao J; Chen T; Guo L; Yang S; Xu X; Ma J; Hu J
    ACS Omega; 2020 Jul; 5(28):17686-17691. PubMed ID: 32715255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.