These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 29718802)

  • 1. Degeneracy in the robust expression of spectral selectivity, subthreshold oscillations, and intrinsic excitability of entorhinal stellate cells.
    Mittal D; Narayanan R
    J Neurophysiol; 2018 Aug; 120(2):576-600. PubMed ID: 29718802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degeneracy in the emergence of spike-triggered average of hippocampal pyramidal neurons.
    Jain A; Narayanan R
    Sci Rep; 2020 Jan; 10(1):374. PubMed ID: 31941985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-channel degeneracy and heterogeneities in the emergence of complex spike bursts in CA3 pyramidal neurons.
    Roy R; Narayanan R
    J Physiol; 2023 Aug; 601(15):3297-3328. PubMed ID: 36201674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous stochastic bifurcations explain intrinsic oscillatory patterns in entorhinal cortical stellate cells.
    Mittal D; Narayanan R
    Proc Natl Acad Sci U S A; 2022 Dec; 119(52):e2202962119. PubMed ID: 36534811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disparate forms of heterogeneities and interactions among them drive channel decorrelation in the dentate gyrus: Degeneracy and dominance.
    Mishra P; Narayanan R
    Hippocampus; 2019 Apr; 29(4):378-403. PubMed ID: 30260063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theta-frequency selectivity in the somatic spike-triggered average of rat hippocampal pyramidal neurons is dependent on HCN channels.
    Das A; Narayanan R
    J Neurophysiol; 2017 Oct; 118(4):2251-2266. PubMed ID: 28768741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological roles of Kv2 channels in entorhinal cortex layer II stellate cells revealed by Guangxitoxin-1E.
    Hönigsperger C; Nigro MJ; Storm JF
    J Physiol; 2017 Feb; 595(3):739-757. PubMed ID: 27562026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex.
    White JA; Klink R; Alonso A; Kay AR
    J Neurophysiol; 1998 Jul; 80(1):262-9. PubMed ID: 9658048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theta resonance and synaptic modulation scale activity patterns in the medial entorhinal cortex stellate cells.
    Katyare N; Sikdar SK
    Ann N Y Acad Sci; 2020 Oct; 1478(1):92-112. PubMed ID: 32794193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons.
    Fransén E; Alonso AA; Dickson CT; Magistretti J; Hasselmo ME
    Hippocampus; 2004; 14(3):368-84. PubMed ID: 15132436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of Ih to feature selectivity in layer II stellate cells of the entorhinal cortex.
    Haas JS; Dorval AD; White JA
    J Comput Neurosci; 2007 Apr; 22(2):161-71. PubMed ID: 17053992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells.
    Boehlen A; Henneberger C; Heinemann U; Erchova I
    J Neurophysiol; 2013 Jan; 109(2):445-63. PubMed ID: 23076110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active dendrites mediate stratified gamma-range coincidence detection in hippocampal model neurons.
    Das A; Narayanan R
    J Physiol; 2015 Aug; 593(16):3549-76. PubMed ID: 26018187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial synaptic conductances reduce subthreshold oscillations and periodic firing in stellate cells of the entorhinal cortex.
    Fernandez FR; White JA
    J Neurosci; 2008 Apr; 28(14):3790-803. PubMed ID: 18385337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical and Network Neuronal Properties Are Preferentially Disrupted in Dorsal, But Not Ventral, Medial Entorhinal Cortex in a Mouse Model of Tauopathy.
    Booth CA; Ridler T; Murray TK; Ward MA; de Groot E; Goodfellow M; Phillips KG; Randall AD; Brown JT
    J Neurosci; 2016 Jan; 36(2):312-24. PubMed ID: 26758825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1997 Apr; 77(4):1813-28. PubMed ID: 9114238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro.
    Cunningham MO; Davies CH; Buhl EH; Kopell N; Whittington MA
    J Neurosci; 2003 Oct; 23(30):9761-9. PubMed ID: 14586003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How reduction of theta rhythm by medial septum inactivation may covary with disruption of entorhinal grid cell responses due to reduced cholinergic transmission.
    Pilly PK; Grossberg S
    Front Neural Circuits; 2013; 7():173. PubMed ID: 24198762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency selectivity of layer II stellate cells in the medial entorhinal cortex.
    Haas JS; White JA
    J Neurophysiol; 2002 Nov; 88(5):2422-9. PubMed ID: 12424283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine D2 receptors regulate the action potential threshold by modulating T-type calcium channels in stellate cells of the medial entorhinal cortex.
    Jin X; Chen Q; Song Y; Zheng J; Xiao K; Shao S; Fu Z; Yi M; Yang Y; Huang Z
    J Physiol; 2019 Jul; 597(13):3363-3387. PubMed ID: 31049961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.