These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 29718802)

  • 21. The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells.
    Kispersky T; White JA; Rotstein HG
    PLoS One; 2010 Nov; 5(11):e13697. PubMed ID: 21079802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Entorhinal stellate cells show preferred spike phase-locking to theta inputs that is enhanced by correlations in synaptic activity.
    Fernandez FR; Malerba P; Bressloff PC; White JA
    J Neurosci; 2013 Apr; 33(14):6027-40. PubMed ID: 23554484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-Inhibitory Rebound Spikes in Rat Medial Entorhinal Layer II/III Principal Cells: In Vivo, In Vitro, and Computational Modeling Characterization.
    Ferrante M; Shay CF; Tsuno Y; William Chapman G; Hasselmo ME
    Cereb Cortex; 2017 Mar; 27(3):2111-2125. PubMed ID: 26965902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-type specific modulation of intrinsic firing properties and subthreshold membrane oscillations by the M(Kv7)-current in neurons of the entorhinal cortex.
    Yoshida M; Alonso A
    J Neurophysiol; 2007 Nov; 98(5):2779-94. PubMed ID: 17728392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons.
    Dickson CT; Magistretti J; Shalinsky MH; Fransén E; Hasselmo ME; Alonso A
    J Neurophysiol; 2000 May; 83(5):2562-79. PubMed ID: 10805658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient phase coding in hippocampal place cells.
    Seenivasan P; Narayanan R
    Phys Rev Res; 2020; 2(3):033393. PubMed ID: 32984841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane potential-dependent integration of synaptic inputs in entorhinal stellate neurons.
    Economo MN; Martínez JJ; White JA
    Hippocampus; 2014 Dec; 24(12):1493-505. PubMed ID: 25044927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1993 Jul; 70(1):144-57. PubMed ID: 7689647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subthreshold membrane potential oscillations in neurons of deep layers of the entorhinal cortex.
    Schmitz D; Gloveli T; Behr J; Dugladze T; Heinemann U
    Neuroscience; 1998 Aug; 85(4):999-1004. PubMed ID: 9681940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression and functional roles of Kv7/KCNQ/M-channels in rat medial entorhinal cortex layer II stellate cells.
    Nigro MJ; Mateos-Aparicio P; Storm JF
    J Neurosci; 2014 May; 34(20):6807-12. PubMed ID: 24828634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of T-Type calcium channels in mEC layer II stellate neurons reduces neuronal hyperexcitability associated with epilepsy.
    Nigam A; Hargus NJ; Barker BS; Ottolini M; Hounshell JA; Bertram EH; Perez-Reyes E; Patel MK
    Epilepsy Res; 2019 Aug; 154():132-138. PubMed ID: 31132598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms.
    Mukunda CL; Narayanan R
    J Physiol; 2017 Apr; 595(8):2611-2637. PubMed ID: 28026868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro.
    Dickson CT; Mena AR; Alonso A
    Neuroscience; 1997 Dec; 81(4):937-50. PubMed ID: 9330357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dorsal-ventral organization of theta-like activity intrinsic to entorhinal stellate neurons is mediated by differences in stochastic current fluctuations.
    Dodson PD; Pastoll H; Nolan MF
    J Physiol; 2011 Jun; 589(Pt 12):2993-3008. PubMed ID: 21502290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II.
    Alonso A; Klink R
    J Neurophysiol; 1993 Jul; 70(1):128-43. PubMed ID: 8395571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular properties of principal neurons in the rat entorhinal cortex. II. The medial entorhinal cortex.
    Canto CB; Witter MP
    Hippocampus; 2012 Jun; 22(6):1277-99. PubMed ID: 22161956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Grid-like hexadirectional modulation of human entorhinal theta oscillations.
    Maidenbaum S; Miller J; Stein JM; Jacobs J
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10798-10803. PubMed ID: 30282738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex.
    Hasselmo ME
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120523. PubMed ID: 24366135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex.
    Heys JG; Giocomo LM; Hasselmo ME
    J Neurophysiol; 2010 Jul; 104(1):258-70. PubMed ID: 20445030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex.
    Nolan MF; Dudman JT; Dodson PD; Santoro B
    J Neurosci; 2007 Nov; 27(46):12440-51. PubMed ID: 18003822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.