These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 29718808)
1. Differences in lumbar motor neuron pruning in an animal model of early onset spasticity. Brandenburg JE; Gransee HM; Fogarty MJ; Sieck GC J Neurophysiol; 2018 Aug; 120(2):601-609. PubMed ID: 29718808 [TBL] [Abstract][Full Text] [Related]
2. Phrenic motor neuron loss in an animal model of early onset hypertonia. Brandenburg JE; Fogarty MJ; Brown AD; Sieck GC J Neurophysiol; 2020 May; 123(5):1682-1690. PubMed ID: 32233911 [TBL] [Abstract][Full Text] [Related]
3. Impaired neuromuscular transmission of the tibialis anterior in a rodent model of hypertonia. Fogarty MJ; Sieck GC; Brandenburg JE J Neurophysiol; 2020 May; 123(5):1864-1869. PubMed ID: 32292122 [TBL] [Abstract][Full Text] [Related]
4. Glycinergic Neurotransmission: A Potent Regulator of Embryonic Motor Neuron Dendritic Morphology and Synaptic Plasticity. Fogarty MJ; Kanjhan R; Bellingham MC; Noakes PG J Neurosci; 2016 Jan; 36(1):80-7. PubMed ID: 26740651 [TBL] [Abstract][Full Text] [Related]
5. Spinal motoneurons respond aberrantly to serotonin in a rabbit model of cerebral palsy. Reedich EJ; Genry LT; Steele PR; Mena Avila E; Dowaliby L; Drobyshevsky A; Manuel M; Quinlan KA J Physiol; 2023 Oct; 601(19):4271-4289. PubMed ID: 37584461 [TBL] [Abstract][Full Text] [Related]
6. Diaphragm neuromuscular transmission failure in a mouse model of an early-onset neuromotor disorder. Fogarty MJ; Brandenburg JE; Sieck GC J Appl Physiol (1985); 2021 Mar; 130(3):708-720. PubMed ID: 33382958 [TBL] [Abstract][Full Text] [Related]
7. Size-dependent dendritic maladaptations of hypoglossal motor neurons in SOD1 Fogarty MJ; Mu EWH; Lavidis NA; Noakes PG; Bellingham MC Anat Rec (Hoboken); 2021 Jul; 304(7):1562-1581. PubMed ID: 33099869 [TBL] [Abstract][Full Text] [Related]
8. Alteration of glycinergic receptor expression in lumbar spinal motoneurons is involved in the mechanisms underlying spasticity after spinal cord injury. Sadlaoud K; Khalki L; Brocard F; Vinay L; Boulenguez P; Bras H J Chem Neuroanat; 2020 Jul; 106():101787. PubMed ID: 32339654 [TBL] [Abstract][Full Text] [Related]
9. Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy. Powis RA; Gillingwater TH J Anat; 2016 Mar; 228(3):443-51. PubMed ID: 26576026 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms involved in spinal cord central synapse loss in a mouse model of spinal muscular atrophy. Tarabal O; Caraballo-Miralles V; Cardona-Rossinyol A; Correa FJ; Olmos G; Lladó J; Esquerda JE; Calderó J J Neuropathol Exp Neurol; 2014 Jun; 73(6):519-35. PubMed ID: 24806302 [TBL] [Abstract][Full Text] [Related]
12. Spinal inhibition and motor function in adults with spastic cerebral palsy. Condliffe EG; Jeffery DT; Emery DJ; Gorassini MA J Physiol; 2016 May; 594(10):2691-705. PubMed ID: 26842905 [TBL] [Abstract][Full Text] [Related]
13. Functional recovery of glycine receptors in spastic murine model of startle disease. Molon A; Di Giovanni S; Hathout Y; Natale J; Hoffman EP Neurobiol Dis; 2006 Feb; 21(2):291-304. PubMed ID: 16182553 [TBL] [Abstract][Full Text] [Related]
14. Changes in innervation of lumbar motoneurons and organization of premotor network following training of transected adult rats. Khalki L; Sadlaoud K; Lerond J; Coq JO; Brezun JM; Vinay L; Coulon P; Bras H Exp Neurol; 2018 Jan; 299(Pt A):1-14. PubMed ID: 28917641 [TBL] [Abstract][Full Text] [Related]
15. Distinct and developmentally regulated activity-dependent plasticity at descending glutamatergic synapses on flexor and extensor motoneurons. Lenschow C; Cazalets JR; Bertrand SS Sci Rep; 2016 Jun; 6():28522. PubMed ID: 27329279 [TBL] [Abstract][Full Text] [Related]
16. Cell death of motoneurons in the chick embryo spinal cord. IX. The loss of motoneurons following removal of afferent inputs. Okado N; Oppenheim RW J Neurosci; 1984 Jun; 4(6):1639-52. PubMed ID: 6726350 [TBL] [Abstract][Full Text] [Related]
17. Development of spinal motoneurons in rats after a neonatal hypoxic insult. Takahashi S; Tanaka H; Oki J Pediatr Neurol; 1999 Oct; 21(4):715-20. PubMed ID: 10580883 [TBL] [Abstract][Full Text] [Related]
18. Chronic treatment with lithium does not improve neuromuscular phenotype in a mouse model of severe spinal muscular atrophy. Dachs E; Piedrafita L; Hereu M; Esquerda JE; Calderó J Neuroscience; 2013 Oct; 250():417-33. PubMed ID: 23876328 [TBL] [Abstract][Full Text] [Related]
19. Postnatal dendritic development in lumbar motoneurons in mutant superoxide dismutase 1 mouse model of amyotrophic lateral sclerosis. Filipchuk AA; Durand J Neuroscience; 2012 May; 209():144-54. PubMed ID: 22387111 [TBL] [Abstract][Full Text] [Related]
20. An ancient role for collier/Olf/Ebf (COE)-type transcription factors in axial motor neuron development. Catela C; Correa E; Wen K; Aburas J; Croci L; Consalez GG; Kratsios P Neural Dev; 2019 Jan; 14(1):2. PubMed ID: 30658714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]