These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Functional Stability of HIV-1 Envelope Trimer Affects Accessibility to Broadly Neutralizing Antibodies at Its Apex. Gift SK; Leaman DP; Zhang L; Kim AS; Zwick MB J Virol; 2017 Dec; 91(24):. PubMed ID: 28978711 [TBL] [Abstract][Full Text] [Related]
5. Anti-V3/Glycan and Anti-MPER Neutralizing Antibodies, but Not Anti-V2/Glycan Site Antibodies, Are Strongly Associated with Greater Anti-HIV-1 Neutralization Breadth and Potency. Jacob RA; Moyo T; Schomaker M; Abrahams F; Grau Pujol B; Dorfman JR J Virol; 2015 May; 89(10):5264-75. PubMed ID: 25673728 [TBL] [Abstract][Full Text] [Related]
6. Glycans Function as Anchors for Antibodies and Help Drive HIV Broadly Neutralizing Antibody Development. Andrabi R; Su CY; Liang CH; Shivatare SS; Briney B; Voss JE; Nawazi SK; Wu CY; Wong CH; Burton DR Immunity; 2017 Sep; 47(3):524-537.e3. PubMed ID: 28916265 [TBL] [Abstract][Full Text] [Related]
7. A Coreceptor-Mimetic Peptide Enhances the Potency of V3-Glycan Antibodies. Fetzer I; Davis-Gardner ME; Gardner MR; Alfant B; Weber JA; Prasad NR; Zhou AS; Farzan M J Virol; 2019 Mar; 93(5):. PubMed ID: 30541842 [TBL] [Abstract][Full Text] [Related]
8. Impact of glycan depletion, glycan debranching and increased glycan charge on HIV-1 neutralization sensitivity and immunogenicity. D'Addabbo A; Tong T; Crooks ET; Osawa K; Xu J; Thomas A; Allen JD; Crispin M; Binley JM Glycobiology; 2024 Sep; 34(11):. PubMed ID: 39115361 [TBL] [Abstract][Full Text] [Related]
9. Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. Pritchard LK; Vasiljevic S; Ozorowski G; Seabright GE; Cupo A; Ringe R; Kim HJ; Sanders RW; Doores KJ; Burton DR; Wilson IA; Ward AB; Moore JP; Crispin M Cell Rep; 2015 Jun; 11(10):1604-13. PubMed ID: 26051934 [TBL] [Abstract][Full Text] [Related]
10. A Bispecific Antibody That Simultaneously Recognizes the V2- and V3-Glycan Epitopes of the HIV-1 Envelope Glycoprotein Is Broader and More Potent than Its Parental Antibodies. Davis-Gardner ME; Alfant B; Weber JA; Gardner MR; Farzan M mBio; 2020 Jan; 11(1):. PubMed ID: 31937648 [TBL] [Abstract][Full Text] [Related]
11. Changes in Structure and Antigenicity of HIV-1 Env Trimers Resulting from Removal of a Conserved CD4 Binding Site-Proximal Glycan. Liang Y; Guttman M; Williams JA; Verkerke H; Alvarado D; Hu SL; Lee KK J Virol; 2016 Oct; 90(20):9224-36. PubMed ID: 27489265 [TBL] [Abstract][Full Text] [Related]
12. Conserved Role of an N-Linked Glycan on the Surface Antigen of Human Immunodeficiency Virus Type 1 Modulating Virus Sensitivity to Broadly Neutralizing Antibodies against the Receptor and Coreceptor Binding Sites. Townsley S; Li Y; Kozyrev Y; Cleveland B; Hu SL J Virol; 2016 Jan; 90(2):829-41. PubMed ID: 26512079 [TBL] [Abstract][Full Text] [Related]
13. Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Clade B Clinical Isolates Produced in Peripheral Blood Mononuclear Cells. Cohen YZ; Lorenzi JCC; Seaman MS; Nogueira L; Schoofs T; Krassnig L; Butler A; Millard K; Fitzsimons T; Daniell X; Dizon JP; Shimeliovich I; Montefiori DC; Caskey M; Nussenzweig MC J Virol; 2018 Mar; 92(5):. PubMed ID: 29237833 [TBL] [Abstract][Full Text] [Related]
14. A Rare Mutation in an Infant-Derived HIV-1 Envelope Glycoprotein Alters Interprotomer Stability and Susceptibility to Broadly Neutralizing Antibodies Targeting the Trimer Apex. Mishra N; Sharma S; Dobhal A; Kumar S; Chawla H; Singh R; Das BK; Kabra SK; Lodha R; Luthra K J Virol; 2020 Sep; 94(19):. PubMed ID: 32669335 [TBL] [Abstract][Full Text] [Related]
15. Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Schoofs T; Barnes CO; Suh-Toma N; Golijanin J; Schommers P; Gruell H; West AP; Bach F; Lee YE; Nogueira L; Georgiev IS; Bailer RT; Czartoski J; Mascola JR; Seaman MS; McElrath MJ; Doria-Rose NA; Klein F; Nussenzweig MC; Bjorkman PJ Immunity; 2019 Jun; 50(6):1513-1529.e9. PubMed ID: 31126879 [TBL] [Abstract][Full Text] [Related]
16. HIV-1 Subtype C-Infected Children with Exceptional Neutralization Breadth Exhibit Polyclonal Responses Targeting Known Epitopes. Ditse Z; Muenchhoff M; Adland E; Jooste P; Goulder P; Moore PL; Morris L J Virol; 2018 Sep; 92(17):. PubMed ID: 29950423 [TBL] [Abstract][Full Text] [Related]
17. Identification of Novel Structural Determinants in MW965 Env That Regulate the Neutralization Phenotype and Conformational Masking Potential of Primary HIV-1 Isolates. Qualls ZM; Choudhary A; Honnen W; Prattipati R; Robinson JE; Pinter A J Virol; 2018 Mar; 92(5):. PubMed ID: 29237828 [TBL] [Abstract][Full Text] [Related]
18. Positive Selection at Key Residues in the HIV Envelope Distinguishes Broad and Strain-Specific Plasma Neutralizing Antibodies. Mabvakure BM; Scheepers C; Garrett N; Abdool Karim S; Williamson C; Morris L; Moore PL J Virol; 2019 Mar; 93(6):. PubMed ID: 30567996 [TBL] [Abstract][Full Text] [Related]
19. Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer. Kong L; Torrents de la Peña A; Deller MC; Garces F; Sliepen K; Hua Y; Stanfield RL; Sanders RW; Wilson IA Acta Crystallogr D Biol Crystallogr; 2015 Oct; 71(Pt 10):2099-108. PubMed ID: 26457433 [TBL] [Abstract][Full Text] [Related]
20. Vaccination with Glycan-Modified HIV NFL Envelope Trimer-Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability. Dubrovskaya V; Tran K; Ozorowski G; Guenaga J; Wilson R; Bale S; Cottrell CA; Turner HL; Seabright G; O'Dell S; Torres JL; Yang L; Feng Y; Leaman DP; Vázquez Bernat N; Liban T; Louder M; McKee K; Bailer RT; Movsesyan A; Doria-Rose NA; Pancera M; Karlsson Hedestam GB; Zwick MB; Crispin M; Mascola JR; Ward AB; Wyatt RT Immunity; 2019 Nov; 51(5):915-929.e7. PubMed ID: 31732167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]