These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 29719099)
1. An Artificial Heme Enzyme for Cyclopropanation Reactions. Villarino L; Splan KE; Reddem E; Alonso-Cotchico L; Gutiérrez de Souza C; Lledós A; Maréchal JD; Thunnissen AWH; Roelfes G Angew Chem Int Ed Engl; 2018 Jun; 57(26):7785-7789. PubMed ID: 29719099 [TBL] [Abstract][Full Text] [Related]
2. LmrR: A Privileged Scaffold for Artificial Metalloenzymes. Roelfes G Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372 [TBL] [Abstract][Full Text] [Related]
3. Repurposed and artificial heme enzymes for cyclopropanation reactions. Roelfes G J Inorg Biochem; 2021 Sep; 222():111523. PubMed ID: 34217039 [TBL] [Abstract][Full Text] [Related]
4. Computation-guided engineering of distal mutations in an artificial enzyme. Casilli F; Canyelles-Niño M; Roelfes G; Alonso-Cotchico L Faraday Discuss; 2024 Sep; 252(0):262-278. PubMed ID: 38836699 [TBL] [Abstract][Full Text] [Related]
5. Exploring the enzyme-catalyzed synthesis of isotope labeled cyclopropanes. Sardana M; Mühlfenzl KS; Wenker STM; Åkesson C; Hayes MA; Elmore CS; Pithani S J Labelled Comp Radiopharm; 2022 Apr; 65(4):86-100. PubMed ID: 34997781 [TBL] [Abstract][Full Text] [Related]
6. Free enzyme dynamics of CmaA3 and CmaA2 cyclopropane mycolic acid synthases from Mycobacterium tuberculosis: Insights into residues with potential significance in cyclopropanation. Annaraj P D; Kadirvel P; Subramanian A; Anishetty S J Mol Graph Model; 2019 Sep; 91():61-71. PubMed ID: 31181453 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics investigation of the active site dynamics of mycobacterial cyclopropane synthase during various stages of the cyclopropanation process. Choudhury C; Deva Priyakumar U; Sastry GN J Struct Biol; 2014 Jul; 187(1):38-48. PubMed ID: 24780591 [TBL] [Abstract][Full Text] [Related]
8. Structures of the substrate-free and product-bound forms of HmuO, a heme oxygenase from corynebacterium diphtheriae: x-ray crystallography and molecular dynamics investigation. Unno M; Ardèvol A; Rovira C; Ikeda-Saito M J Biol Chem; 2013 Nov; 288(48):34443-58. PubMed ID: 24106279 [TBL] [Abstract][Full Text] [Related]
9. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts. Bordeaux M; Tyagi V; Fasan R Angew Chem Int Ed Engl; 2015 Feb; 54(6):1744-8. PubMed ID: 25538035 [TBL] [Abstract][Full Text] [Related]
10. In Vivo Biocatalytic Cascades Featuring an Artificial-Enzyme-Catalysed New-to-Nature Reaction. Ofori Atta L; Zhou Z; Roelfes G Angew Chem Int Ed Engl; 2023 Jan; 62(1):e202214191. PubMed ID: 36342952 [TBL] [Abstract][Full Text] [Related]
11. Iron Heme Enzyme-Catalyzed Cyclopropanations with Diazirines as Carbene Precursors: Computational Explorations of Diazirine Activation and Cyclopropanation Mechanism. Rogge T; Zhou Q; Porter NJ; Arnold FH; Houk KN J Am Chem Soc; 2024 Feb; 146(5):2959-2966. PubMed ID: 38270588 [TBL] [Abstract][Full Text] [Related]
12. What Your Crystal Structure Will Not Tell You about Enzyme Function. Pochapsky TC; Pochapsky SS Acc Chem Res; 2019 May; 52(5):1409-1418. PubMed ID: 31034199 [TBL] [Abstract][Full Text] [Related]
13. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole-Cell Biocatalysis*. Chordia S; Narasimhan S; Lucini Paioni A; Baldus M; Roelfes G Angew Chem Int Ed Engl; 2021 Mar; 60(11):5913-5920. PubMed ID: 33428816 [TBL] [Abstract][Full Text] [Related]
14. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts. Oohora K; Onoda A; Hayashi T Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics explorations of active site structure in designed and evolved enzymes. Osuna S; Jiménez-Osés G; Noey EL; Houk KN Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880 [TBL] [Abstract][Full Text] [Related]
16. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Key HM; Dydio P; Clark DS; Hartwig JF Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224 [TBL] [Abstract][Full Text] [Related]
17. A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue. Drienovská I; Mayer C; Dulson C; Roelfes G Nat Chem; 2018 Sep; 10(9):946-952. PubMed ID: 29967395 [TBL] [Abstract][Full Text] [Related]
18. Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates. Mahinthichaichan P; Gennis RB; Tajkhorshid E Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):712-724. PubMed ID: 29883591 [TBL] [Abstract][Full Text] [Related]
19. An Artificial Enzyme for Asymmetric Nitrocyclopropanation of α,β-Unsaturated Aldehydes-Design and Evolution. Yu MZ; Yuan Y; Li ZJ; Kunthic T; Wang HX; Xu C; Xiang Z Angew Chem Int Ed Engl; 2024 Jun; 63(25):e202401635. PubMed ID: 38597773 [TBL] [Abstract][Full Text] [Related]
20. Non-natural olefin cyclopropanation catalyzed by diverse cytochrome P450s and other hemoproteins. Heel T; McIntosh JA; Dodani SC; Meyerowitz JT; Arnold FH Chembiochem; 2014 Nov; 15(17):2556-62. PubMed ID: 25294253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]