These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 29719505)

  • 21. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.
    Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA
    J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitophagy and Parkinson's disease: be eaten to stay healthy.
    de Vries RL; Przedborski S
    Mol Cell Neurosci; 2013 Jul; 55():37-43. PubMed ID: 22926193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding multifactorial architecture of Parkinson's disease: pathophysiology to management.
    Kaur R; Mehan S; Singh S
    Neurol Sci; 2019 Jan; 40(1):13-23. PubMed ID: 30267336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular events underlying Parkinson's disease - an interwoven tapestry.
    Lim KL; Zhang CW
    Front Neurol; 2013; 4():33. PubMed ID: 23580245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease?
    Herrera A; Muñoz P; Steinbusch HWM; Segura-Aguilar J
    ACS Chem Neurosci; 2017 Apr; 8(4):702-711. PubMed ID: 28233992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review.
    Dinda B; Dinda M; Kulsi G; Chakraborty A; Dinda S
    Eur J Med Chem; 2019 May; 169():185-199. PubMed ID: 30877973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New Developments in Genetic rat models of Parkinson's Disease.
    Creed RB; Goldberg MS
    Mov Disord; 2018 May; 33(5):717-729. PubMed ID: 29418019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson's disease.
    Sharma N; Rao SP; Kalivendi SV
    Free Radic Biol Med; 2019 May; 135():28-37. PubMed ID: 30796974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioenergetics and Autophagic Imbalance in Patients-Derived Cell Models of Parkinson Disease Supports Systemic Dysfunction in Neurodegeneration.
    González-Casacuberta I; Juárez-Flores DL; Morén C; Garrabou G
    Front Neurosci; 2019; 13():894. PubMed ID: 31551675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An ERcentric view of Parkinson's disease.
    Mercado G; Valdés P; Hetz C
    Trends Mol Med; 2013 Mar; 19(3):165-75. PubMed ID: 23352769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ca
    Xu J; Minobe E; Kameyama M
    Front Cell Neurosci; 2022; 16():867385. PubMed ID: 35496903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Basal and Evoked Neurotransmitter Levels in Parkin, DJ-1, PINK1 and LRRK2 Knockout Rat Striatum.
    Creed RB; Menalled L; Casey B; Dave KD; Janssens HB; Veinbergs I; van der Hart M; Rassoulpour A; Goldberg MS
    Neuroscience; 2019 Jun; 409():169-179. PubMed ID: 31029729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial dysfunctions in Parkinson's disease.
    Gautier CA; Corti O; Brice A
    Rev Neurol (Paris); 2014 May; 170(5):339-43. PubMed ID: 24119854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Apelin-13 protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through inhibiting endoplasmic reticulum stress and promoting autophagy.
    Zhu J; Dou S; Jiang Y; Chen J; Wang C; Cheng B
    Brain Res; 2019 Jul; 1715():203-212. PubMed ID: 30914252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.
    Perier C; Bender A; García-Arumí E; Melià MJ; Bové J; Laub C; Klopstock T; Elstner M; Mounsey RB; Teismann P; Prolla T; Andreu AL; Vila M
    Brain; 2013 Aug; 136(Pt 8):2369-78. PubMed ID: 23884809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. α-synuclein expression from a single copy transgene increases sensitivity to stress and accelerates neuronal loss in genetic models of Parkinson's disease.
    Cooper JF; Spielbauer KK; Senchuk MM; Nadarajan S; Colaiácovo MP; Van Raamsdonk JM
    Exp Neurol; 2018 Dec; 310():58-69. PubMed ID: 30194957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson's disease.
    Xie W; Wan OW; Chung KK
    Biochim Biophys Acta; 2010 Nov; 1802(11):935-41. PubMed ID: 20674742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of potential therapeutic compounds for Parkinson's disease using Drosophila and human cell models.
    Sanz FJ; Solana-Manrique C; Muñoz-Soriano V; Calap-Quintana P; Moltó MD; Paricio N
    Free Radic Biol Med; 2017 Jul; 108():683-691. PubMed ID: 28455141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout.
    Giguère N; Delignat-Lavaud B; Herborg F; Voisin A; Li Y; Jacquemet V; Anand-Srivastava M; Gether U; Giros B; Trudeau LÉ
    PLoS Genet; 2019 Aug; 15(8):e1008352. PubMed ID: 31449520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson's disease.
    Lotharius J; Brundin P
    Hum Mol Genet; 2002 Oct; 11(20):2395-407. PubMed ID: 12351575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.