These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 29719696)

  • 21. The Evolution of the Ammonia Synthesis Catalyst 'AmoMax®-CASALE'.
    D'Alessandri J; Filippi E; Panza S; Estenfelder M; Reitmeier SJ; Reitzmann A; Biasi P; Eckert R
    Chimia (Aarau); 2022 Aug; 76(7-8):635-640. PubMed ID: 38071629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of CeO
    Maeda R; Sampei H; Nakayama R; Higo T; Koshizuka Y; Bando Y; Komanoya T; Nakahara Y; Sekine Y
    RSC Adv; 2024 Mar; 14(14):9869-9877. PubMed ID: 38528930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Li-intercalated CeO
    Gao Z; Mu X; Xiong Q; Li L
    Dalton Trans; 2023 Oct; 52(42):15334-15337. PubMed ID: 37387621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inverse kinetic isotope effect of ammonia decomposition over Ru/CeO
    Suguro T; Kishimoto F; Kuramoto S; Movick WJ; Takanabe K
    Chem Commun (Camb); 2024 Jul; 60(60):7713-7716. PubMed ID: 38967350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-high vacuum compatible reactor for model catalyst study of ammonia synthesis at ambient pressure.
    Zhang K; Wandall LH; Vernieres J; Kibsgaard J; Chorkendorff I
    Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37921521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid and efficient synthesis of formamidines in a catalyst-free and solvent-free system.
    Zhou Z; Zhao Y; Zhou D; Li L; Luo H; Cui L; Yang W
    RSC Adv; 2021 Oct; 11(54):33868-33871. PubMed ID: 35497291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple reaction pathway on alkaline earth imide supported catalysts for efficient ammonia synthesis.
    Li Z; Lu Y; Li J; Xu M; Qi Y; Park SW; Kitano M; Hosono H; Chen JS; Ye TN
    Nat Commun; 2023 Oct; 14(1):6373. PubMed ID: 37821432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile formation of barium titanium oxyhydride on a titanium hydride surface as an ammonia synthesis catalyst.
    Goto Y; Kikugawa M; Kobayashi K; Manaka Y; Nanba T; Matsumoto H; Matsumoto M; Aoki M; Imagawa H
    RSC Adv; 2023 May; 13(23):15410-15415. PubMed ID: 37223413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-Temperature Ammonia Synthesis on Iron Catalyst with an Electron Donor.
    Hattori M; Okuyama N; Kurosawa H; Hara M
    J Am Chem Soc; 2023 Apr; 145(14):7888-7897. PubMed ID: 36996317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Gas-Solid Reaction Thermodynamics on the Performance of a Chemical Looping Ammonia Synthesis Process.
    Pereira RJL; Hu W; Metcalfe IS
    Energy Fuels; 2022 Sep; 36(17):9757-9767. PubMed ID: 36081854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co Nanoparticle Catalysts Encapsulated by BaO-La
    Miyahara SI; Sato K; Tsujimaru K; Wada Y; Ogura Y; Toriyama T; Yamamoto T; Matsumura S; Inazu K; Nagaoka K
    ACS Omega; 2022 Jul; 7(28):24452-24460. PubMed ID: 35874216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Method for evaluating the performance of catalytic reactions using renewable-energy-derived materials.
    Manaka Y; Nagata Y; Kobayashi K; Kobayashi D; Nanba T
    Sci Rep; 2022 Jun; 12(1):10604. PubMed ID: 35732897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A high performance barium-promoted cobalt catalyst supported on magnesium-lanthanum mixed oxide for ammonia synthesis.
    Ronduda H; Zybert M; Patkowski W; Ostrowski A; Jodłowski P; Szymański D; Kępiński L; Raróg-Pilecka W
    RSC Adv; 2021 Apr; 11(23):14218-14228. PubMed ID: 35423907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facilitating green ammonia manufacture under milder conditions: what do heterogeneous catalyst formulations have to offer?
    Ravi M; Makepeace JW
    Chem Sci; 2022 Jan; 13(4):890-908. PubMed ID: 35211256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient ammonia synthesis over a Ru/La
    Ogura Y; Sato K; Miyahara SI; Kawano Y; Toriyama T; Yamamoto T; Matsumura S; Hosokawa S; Nagaoka K
    Chem Sci; 2018 Feb; 9(8):2230-2237. PubMed ID: 29719696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis.
    Sato K; Imamura K; Kawano Y; Miyahara SI; Yamamoto T; Matsumura S; Nagaoka K
    Chem Sci; 2017 Jan; 8(1):674-679. PubMed ID: 28451216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly efficient ammonia synthesis at low temperature over a Ru-Co catalyst with dual atomically dispersed active centers.
    Peng X; Liu HX; Zhang Y; Huang ZQ; Yang L; Jiang Y; Wang X; Zheng L; Chang C; Au CT; Jiang L; Li J
    Chem Sci; 2021 Apr; 12(20):7125-7137. PubMed ID: 34123340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic Behavior of K-doped Fe/MgO Catalysts for Ammonia Synthesis Under Mild Reaction Conditions.
    Era K; Sato K; Miyahara SI; Naito T; De Silva K; Akrami S; Yamada H; Toriyama T; Yamamoto T; Murakami Y; Aika KI; Inazu K; Nagaoka K
    ChemSusChem; 2023 Nov; 16(22):e202300942. PubMed ID: 37877342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review on sensing and catalytic activity of nano-catalyst for synthesis of one-step ammonia and urea: Challenges and perspectives.
    Qureshi S; Mumtaz M; Chong FK; Mukhtar A; Saqib S; Ullah S; Mubashir M; Khoo KS; Show PL
    Chemosphere; 2022 Mar; 291(Pt 3):132806. PubMed ID: 34780730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Non-dissociative Activation of Dinitrogen to Ammonia over Lithium-Promoted Ruthenium Nanoparticles at Low Pressure.
    Zheng J; Liao F; Wu S; Jones G; Chen TY; Fellowes J; Sudmeier T; McPherson IJ; Wilkinson I; Tsang SCE
    Angew Chem Int Ed Engl; 2019 Nov; 58(48):17335-17341. PubMed ID: 31560158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.