These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

852 related articles for article (PubMed ID: 29719757)

  • 21. Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and future prospects.
    Murali M; Gowtham HG; Singh SB; Shilpa N; Aiyaz M; Alomary MN; Alshamrani M; Salawi A; Almoshari Y; Ansari MA; Amruthesh KN
    Sci Total Environ; 2022 Mar; 811():152249. PubMed ID: 34896497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating the relationship between nanomaterial hazard and physicochemical properties: Informing the exploitation of nanomaterials within therapeutic and diagnostic applications.
    Johnston H; Brown D; Kermanizadeh A; Gubbins E; Stone V
    J Control Release; 2012 Dec; 164(3):307-13. PubMed ID: 22940205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prospects of Nanostructure Materials and Their Composites as Antimicrobial Agents.
    Baranwal A; Srivastava A; Kumar P; Bajpai VK; Maurya PK; Chandra P
    Front Microbiol; 2018; 9():422. PubMed ID: 29593676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relevance of Physicochemical Characterization of Nanomaterials for Understanding Nano-cellular Interactions.
    Louro H
    Adv Exp Med Biol; 2018; 1048():123-142. PubMed ID: 29453536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials.
    Demir E
    J Appl Toxicol; 2021 Jan; 41(1):118-147. PubMed ID: 33111384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Importance of Surface Topography in Both Biological Activity and Catalysis of Nanomaterials: Can Catalysis by Design Guide Safe by Design?
    Gulumian M; Andraos C; Afantitis A; Puzyn T; Coville NJ
    Int J Mol Sci; 2021 Aug; 22(15):. PubMed ID: 34361117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticles in Daily Life: Applications, Toxicity and Regulations.
    Gupta R; Xie H
    J Environ Pathol Toxicol Oncol; 2018; 37(3):209-230. PubMed ID: 30317972
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomic approach to nanotoxicity.
    Matysiak M; Kapka-Skrzypczak L; Brzóska K; Gutleb AC; Kruszewski M
    J Proteomics; 2016 Mar; 137():35-44. PubMed ID: 26506535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Penetration and Toxicity of Nanomaterials in Higher Plants.
    Chichiriccò G; Poma A
    Nanomaterials (Basel); 2015 May; 5(2):851-873. PubMed ID: 28347040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles.
    Delaval M; Wohlleben W; Landsiedel R; Baeza-Squiban A; Boland S
    Arch Toxicol; 2017 Jan; 91(1):163-177. PubMed ID: 27060086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanomaterial translocation--the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs--a review.
    Kermanizadeh A; Balharry D; Wallin H; Loft S; Møller P
    Crit Rev Toxicol; 2015; 45(10):837-72. PubMed ID: 26140391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental transformations and ecological effects of iron-based nanoparticles.
    Lei C; Sun Y; Tsang DCW; Lin D
    Environ Pollut; 2018 Jan; 232():10-30. PubMed ID: 28966028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of size and shape on toxicity of zinc oxide (ZnO) nanomaterials in human peripheral blood lymphocytes.
    Shalini D; Senthilkumar S; Rajaguru P
    Toxicol Mech Methods; 2018 Feb; 28(2):87-94. PubMed ID: 28805101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications.
    Harish V; Tewari D; Gaur M; Yadav AB; Swaroop S; Bechelany M; Barhoum A
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review on the structural characterization of nanomaterials for nano-QSAR models.
    Moncho S; Serrano-Candelas E; de Julián-Ortiz JV; Gozalbes R
    Beilstein J Nanotechnol; 2024; 15():854-866. PubMed ID: 39015425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into eco-corona formation and its role in the biological effects of nanomaterials from a molecular mechanisms perspective.
    Liu S; Zhang X; Zeng K; He C; Huang Y; Xin G; Huang X
    Sci Total Environ; 2023 Feb; 858(Pt 2):159867. PubMed ID: 36334667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A directed co-assembly of herbal small molecules into carrier-free nanodrugs for enhanced synergistic antitumor efficacy.
    Wang J; Qiao W; Li X; Zhao H; Zhang H; Dong A; Yang X
    J Mater Chem B; 2021 Jan; 9(4):1040-1048. PubMed ID: 33392615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review.
    Souza MR; Mazaro-Costa R; Rocha TL
    Sci Total Environ; 2021 May; 769():144354. PubMed ID: 33736249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanomaterials in the environment, human exposure pathway, and health effects: A review.
    Malakar A; Kanel SR; Ray C; Snow DD; Nadagouda MN
    Sci Total Environ; 2021 Mar; 759():143470. PubMed ID: 33248790
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The janus facet of nanomaterials.
    Kardos J; Jemnitz K; Jablonkai I; Bóta A; Varga Z; Visy J; Héja L
    Biomed Res Int; 2015; 2015():317184. PubMed ID: 26075225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.