BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 29719767)

  • 21. Highly Active Ni-Ru Bimetallic Catalyst Integrated with MFI Zeolite-Loaded Cerium Zirconium Oxide for Dry Reforming of Methane.
    Miao C; Chen S; Shang K; Liang L; Ouyang J
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47616-47632. PubMed ID: 36223106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane.
    Al-Fatesh AS; Kumar R; Fakeeha AH; Kasim SO; Khatri J; Ibrahim AA; Arasheed R; Alabdulsalam M; Lanre MS; Osman AI; Abasaeed AE; Bagabas A
    Sci Rep; 2020 Aug; 10(1):13861. PubMed ID: 32807834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO
    Chen C; Wang W; Ren Q; Ye R; Nie N; Liu Z; Zhang L; Xiao J
    Front Chem; 2022; 10():993691. PubMed ID: 36118307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visible-light-driven dry reforming of methane using a semiconductor-supported catalyst.
    Cho Y; Shoji S; Yamaguchi A; Hoshina T; Fujita T; Abe H; Miyauchi M
    Chem Commun (Camb); 2020 Apr; 56(33):4611-4614. PubMed ID: 32211643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biogas Conversion to Syngas Using Advanced Ni-Promoted Pyrochlore Catalysts: Effect of the CH
    le Saché E; Alvarez Moreno A; Reina TR
    Front Chem; 2021; 9():672419. PubMed ID: 33937208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ni-Co bimetallic catalysts on coconut shell activated carbon prepared using solid-phase method for highly efficient dry reforming of methane.
    Li L; Chen J; Zhang Y; Sun J; Zou G
    Environ Sci Pollut Res Int; 2022 May; 29(25):37685-37699. PubMed ID: 35066826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of Photothermal Catalyst from Biomass Ash (Bagasse) for Hydrogen Production via Dry Reforming of Methane (DRM): An Experimental Study.
    Kanchanakul I; Srinophakun TR; Kuboon S; Kaneko H; Kraithong W; Miyauchi M; Yamaguchi A
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CO
    Afandi NS; Mohammadi M; Ichikawa S; Mohamed AR
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43011-43027. PubMed ID: 32725565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing Thermocatalytic Activities by Upshifting the d-Band Center of Exsolved Co-Ni-Fe Ternary Alloy Nanoparticles for the Dry Reforming of Methane.
    Joo S; Kim K; Kwon O; Oh J; Kim HJ; Zhang L; Zhou J; Wang JQ; Jeong HY; Han JW; Kim G
    Angew Chem Int Ed Engl; 2021 Jul; 60(29):15912-15919. PubMed ID: 33961725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coke-Resistant Ni/CeZrO
    Sophiana IC; Iskandar F; Devianto H; Nishiyama N; Budhi YW
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural insight into an atomic layer deposition (ALD) grown Al
    Kim SM; Armutlulu A; Liao WC; Hosseini D; Stoian D; Chen Z; Abdala PM; Copéret C; Müller C
    Catal Sci Technol; 2021 Nov; 11(23):7563-7577. PubMed ID: 34912540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study on La-promoted Ni/γ-Al
    Pegios N; Bliznuk V; Prünte S; Schneider JM; Palkovits R; Simeonov K
    RSC Adv; 2018 Jan; 8(2):606-618. PubMed ID: 35538961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Promoted coke resistance of Ni by surface carbon for the dry reforming of methane.
    Guo Z; Chen S; Yang B
    iScience; 2023 Mar; 26(3):106237. PubMed ID: 36936792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Influence of High-Energy Faceted TiO
    Wasantwisut S; Xiao Y; Feng P; Gilliard-Abdul-Aziz KL
    Chem Asian J; 2022 Feb; 17(4):e202101253. PubMed ID: 34936730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dry Reforming of Methane on Ni/LaZrO
    Jiao H; Wang GC
    ACS Appl Mater Interfaces; 2024 Jun; ():. PubMed ID: 38924504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Influence of Promoter on Ni(15)/La(5)/γ-Al2O3 Catalyst in CO2-Steam Reforming of Methane to Syngas at High Pressure.
    Ok HJ; Park MH; Moon DJ; Kim JH; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):449-53. PubMed ID: 26328379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-Exsolution of Ni-Based Alloy Catalysts for the Valorization of Carbon Dioxide and Methane.
    Najimu M; Jo S; Gilliard-AbdulAziz KL
    Acc Chem Res; 2023 Nov; 56(22):3132-3141. PubMed ID: 37939260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Harnessing Strong Metal-Support Interaction to Proliferate the Dry Reforming of Methane Performance by In Situ Reduction.
    Jeon OS; Lee H; Lee KS; Paidi VK; Ji Y; Kwon OC; Kim JP; Myung JH; Park SY; Yoo YJ; Lee JG; Lee SY; Shul YG
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12140-12148. PubMed ID: 35238550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved Selectivity and Stability in Methane Dry Reforming by Atomic Layer Deposition on Ni-CeO
    Lucas J; Padmanabha Naveen NS; Janik MJ; Alexopoulos K; Noh G; Aireddy D; Ding K; Dorman JA; Dooley KM
    ACS Catal; 2024 Jun; 14(12):9115-9133. PubMed ID: 38933468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.