BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29720306)

  • 1. Directed Evolution of Artificial Metalloenzymes: Genetic Optimization of the Catalytic Activity.
    Hestericová M
    Chimia (Aarau); 2018 Apr; 72(4):189-192. PubMed ID: 29720306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology.
    Mallin H; Hestericová M; Reuter R; Ward TR
    Nat Protoc; 2016 May; 11(5):835-52. PubMed ID: 27031496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli's Periplasm.
    Zhao J; Rebelein JG; Mallin H; Trindler C; Pellizzoni MM; Ward TR
    J Am Chem Soc; 2018 Oct; 140(41):13171-13175. PubMed ID: 30272972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution of artificial metalloenzymes for in vivo metathesis.
    Jeschek M; Reuter R; Heinisch T; Trindler C; Klehr J; Panke S; Ward TR
    Nature; 2016 Sep; 537(7622):661-665. PubMed ID: 27571282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase.
    Hestericová M; Heinisch T; Lenz M; Ward TR
    Dalton Trans; 2018 Aug; 47(32):10837-10841. PubMed ID: 30019062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periplasmic Screening for Artificial Metalloenzymes.
    Jeschek M; Panke S; Ward TR
    Methods Enzymol; 2016; 580():539-56. PubMed ID: 27586348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed Evolution of an Artificial Imine Reductase.
    Hestericová M; Heinisch T; Alonso-Cotchico L; Maréchal JD; Vidossich P; Ward TR
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1863-1868. PubMed ID: 29265726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
    Heinisch T; Ward TR
    Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemogenetic protein engineering: an efficient tool for the optimization of artificial metalloenzymes.
    Pordea A; Ward TR
    Chem Commun (Camb); 2008 Sep; (36):4239-49. PubMed ID: 18802535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin--an insight from molecular dynamics simulations with classical and ab initio force fields.
    Panek JJ; Ward TR; Jezierska-Mazzarello A; Novic M
    J Comput Aided Mol Des; 2010 Sep; 24(9):719-32. PubMed ID: 20526651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging artificial metalloenzymes for asymmetric hydrogenation reactions.
    Goralski ST; Rose MJ
    Curr Opin Chem Biol; 2022 Feb; 66():102096. PubMed ID: 34879303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent achievments in the design and engineering of artificial metalloenzymes.
    Dürrenberger M; Ward TR
    Curr Opin Chem Biol; 2014 Apr; 19():99-106. PubMed ID: 24608081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design.
    Heinisch T; Pellizzoni M; Dürrenberger M; Tinberg CE; Köhler V; Klehr J; Häussinger D; Baker D; Ward TR
    J Am Chem Soc; 2015 Aug; 137(32):10414-9. PubMed ID: 26226626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies.
    Schwizer F; Okamoto Y; Heinisch T; Gu Y; Pellizzoni MM; Lebrun V; Reuter R; Köhler V; Lewis JC; Ward TR
    Chem Rev; 2018 Jan; 118(1):142-231. PubMed ID: 28714313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology.
    Wang W; Tachibana R; Zou Z; Chen D; Zhang X; Lau K; Pojer F; Ward TR; Hu X
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202311896. PubMed ID: 37671593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designed evolution of artificial metalloenzymes: protein catalysts made to order.
    Creus M; Ward TR
    Org Biomol Chem; 2007 Jun; 5(12):1835-44. PubMed ID: 17551630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism.
    Jeschek M; Panke S; Ward TR
    Trends Biotechnol; 2018 Jan; 36(1):60-72. PubMed ID: 29061328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.