These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29720306)

  • 21. Artificial transfer hydrogenases based on the biotin-(strept)avidin technology: fine tuning the selectivity by saturation mutagenesis of the host protein.
    Letondor C; Pordea A; Humbert N; Ivanova A; Mazurek S; Novic M; Ward TR
    J Am Chem Soc; 2006 Jun; 128(25):8320-8. PubMed ID: 16787096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial metalloenzymes for olefin metathesis based on the biotin-(strept)avidin technology.
    Lo C; Ringenberg MR; Gnandt D; Wilson Y; Ward TR
    Chem Commun (Camb); 2011 Nov; 47(44):12065-7. PubMed ID: 21959544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial metalloenzymes for enantioselective catalysis.
    Bos J; Roelfes G
    Curr Opin Chem Biol; 2014 Apr; 19():135-43. PubMed ID: 24608083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial metalloenzymes: (strept)avidin as host for enantioselective hydrogenation by achiral biotinylated rhodium-diphosphine complexes.
    Skander M; Humbert N; Collot J; Gradinaru J; Klein G; Loosli A; Sauser J; Zocchi A; Gilardoni F; Ward TR
    J Am Chem Soc; 2004 Nov; 126(44):14411-8. PubMed ID: 15521760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial metalloenzymes: proteins as hosts for enantioselective catalysis.
    Thomas CM; Ward TR
    Chem Soc Rev; 2005 Apr; 34(4):337-46. PubMed ID: 15778767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades.
    Okamoto Y; Köhler V; Ward TR
    J Am Chem Soc; 2016 May; 138(18):5781-4. PubMed ID: 27100673
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein-based hybrid catalysts--design and evolution.
    Köhler V; Wilson YM; Lo C; Sardo A; Ward TR
    Curr Opin Biotechnol; 2010 Dec; 21(6):744-52. PubMed ID: 20926284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes.
    Köhler V; Wilson YM; Dürrenberger M; Ghislieri D; Churakova E; Quinto T; Knörr L; Häussinger D; Hollmann F; Turner NJ; Ward TR
    Nat Chem; 2013 Feb; 5(2):93-9. PubMed ID: 23344429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ru(II)-diimine functionalized metalloproteins: From electron transfer studies to light-driven biocatalysis.
    Lam Q; Kato M; Cheruzel L
    Biochim Biophys Acta; 2016 May; 1857(5):589-597. PubMed ID: 26392147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolving artificial metalloenzymes via random mutagenesis.
    Yang H; Swartz AM; Park HJ; Srivastava P; Ellis-Guardiola K; Upp DM; Lee G; Belsare K; Gu Y; Zhang C; Moellering RE; Lewis JC
    Nat Chem; 2018 Mar; 10(3):318-324. PubMed ID: 29461523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Counter propagation artificial neural networks modeling of an enantioselectivity of artificial metalloenzymes.
    Mazurek S; Ward TR; Novic M
    Mol Divers; 2007; 11(3-4):141-52. PubMed ID: 18317943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enantioselective biocatalysis optimized by directed evolution.
    Jaeger KE; Eggert T
    Curr Opin Biotechnol; 2004 Aug; 15(4):305-13. PubMed ID: 15358000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial metalloenzymes for enantioselective catalysis based on the noncovalent incorporation of organometallic moieties in a host protein.
    Ward TR
    Chemistry; 2005 Jun; 11(13):3798-804. PubMed ID: 15761912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell.
    Okamoto Y; Kojima R; Schwizer F; Bartolami E; Heinisch T; Matile S; Fussenegger M; Ward TR
    Nat Commun; 2018 May; 9(1):1943. PubMed ID: 29769518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards the Evolution of Artificial Metalloenzymes-A Protein Engineer's Perspective.
    Markel U; Sauer DF; Schiffels J; Okuda J; Schwaneberg U
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4454-4464. PubMed ID: 30431222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation.
    Hyster TK; Knörr L; Ward TR; Rovis T
    Science; 2012 Oct; 338(6106):500-3. PubMed ID: 23112327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mysteries of metals in metalloenzymes.
    Valdez CE; Smith QA; Nechay MR; Alexandrova AN
    Acc Chem Res; 2014 Oct; 47(10):3110-7. PubMed ID: 25207938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A dual anchoring strategy for the localization and activation of artificial metalloenzymes based on the biotin-streptavidin technology.
    Zimbron JM; Heinisch T; Schmid M; Hamels D; Nogueira ES; Schirmer T; Ward TR
    J Am Chem Soc; 2013 Apr; 135(14):5384-8. PubMed ID: 23496309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.