These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 29720313)
1. Analysis of Inorganic Nanoparticles by Single-particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Hendriks L; Gundlach-Graham A; Günther D Chimia (Aarau); 2018 Apr; 72(4):221-226. PubMed ID: 29720313 [TBL] [Abstract][Full Text] [Related]
2. Analysis of complex particle mixtures by asymmetrical flow field-flow fractionation coupled to inductively coupled plasma time-of-flight mass spectrometry. Meili-Borovinskaya O; Meier F; Drexel R; Baalousha M; Flamigni L; Hegetschweiler A; Kraus T J Chromatogr A; 2021 Mar; 1641():461981. PubMed ID: 33684778 [TBL] [Abstract][Full Text] [Related]
3. [Application of non-stationary phase separation hyphenated with inductively coupled plasma mass spectrometry in the analysis of trace metal-containing nanoparticles in the environment]. Jiang H; Li J; Tan Z; Guo Y; Liu Y; Hu L; Yin Y; Cai Y; Jiang G Se Pu; 2021 Aug; 39(8):855-869. PubMed ID: 34212586 [TBL] [Abstract][Full Text] [Related]
4. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry. Yang Y; Long CL; Li HP; Wang Q; Yang ZG Sci Total Environ; 2016 Sep; 563-564():996-1007. PubMed ID: 26895948 [TBL] [Abstract][Full Text] [Related]
5. Fates of Au, Ag, ZnO, and CeO He X; Zhang H; Shi H; Liu W; Sahle-Demessie E J Am Soc Mass Spectrom; 2020 Oct; 31(10):2180-2190. PubMed ID: 32881526 [TBL] [Abstract][Full Text] [Related]
6. Separation, detection and characterization of nanomaterials in municipal wastewaters using hydrodynamic chromatography coupled to ICPMS and single particle ICPMS. Proulx K; Hadioui M; Wilkinson KJ Anal Bioanal Chem; 2016 Jul; 408(19):5147-55. PubMed ID: 26970748 [TBL] [Abstract][Full Text] [Related]
7. Online microdroplet calibration for accurate nanoparticle quantification in organic matrices. Harycki S; Gundlach-Graham A Anal Bioanal Chem; 2022 Oct; 414(25):7543-7551. PubMed ID: 35583679 [TBL] [Abstract][Full Text] [Related]
8. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles. Pergantis SA; Jones-Lepp TL; Heithmar EM Anal Chem; 2012 Aug; 84(15):6454-62. PubMed ID: 22804728 [TBL] [Abstract][Full Text] [Related]
9. Analysis of engineered nanomaterials (Ag, CeO Loosli F; Wang J; Sikder M; Afshinnia K; Baalousha M Sci Total Environ; 2020 May; 715():136927. PubMed ID: 32007892 [TBL] [Abstract][Full Text] [Related]
10. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Gray EP; Coleman JG; Bednar AJ; Kennedy AJ; Ranville JF; Higgins CP Environ Sci Technol; 2013 Dec; 47(24):14315-23. PubMed ID: 24218983 [TBL] [Abstract][Full Text] [Related]
11. Single-Particle ICP-TOFMS with Online Microdroplet Calibration: A Versatile Approach for Accurate Quantification of Nanoparticles, Submicron Particles, and Microplastics in Seawater. Harycki S; Gundlach-Graham A Anal Chem; 2023 Oct; 95(41):15318-15324. PubMed ID: 37788319 [TBL] [Abstract][Full Text] [Related]
12. Direct Measurement of Microplastics by Carbon Detection via Single Particle ICP-TOFMS in Complex Aqueous Suspensions. Hendriks L; Mitrano DM Environ Sci Technol; 2023 May; 57(18):7263-7272. PubMed ID: 37104680 [TBL] [Abstract][Full Text] [Related]
13. Emerging investigator series: automated single-nanoparticle quantification and classification: a holistic study of particles into and out of wastewater treatment plants in Switzerland. Mehrabi K; Kaegi R; Günther D; Gundlach-Graham A Environ Sci Nano; 2021 Mar; 8(5):1211-1225. PubMed ID: 34046179 [TBL] [Abstract][Full Text] [Related]
14. Asymmetrical Flow-Field-Flow Fractionation coupled with inductively coupled plasma mass spectrometry for the analysis of gold nanoparticles in the presence of natural nanoparticles. Meisterjahn B; Neubauer E; Von der Kammer F; Hennecke D; Hofmann T J Chromatogr A; 2014 Dec; 1372C():204-211. PubMed ID: 25465017 [TBL] [Abstract][Full Text] [Related]
15. Exploring Nanogeochemical Environments: New Insights from Single Particle ICP-TOFMS and AF4-ICPMS. Montaño MD; Cuss CW; Holliday HM; Javed MB; Shotyk W; Sobocinski KL; Hofmann T; Kammer FV; Ranville JF ACS Earth Space Chem; 2022 Apr; 6(4):943-952. PubMed ID: 35495366 [TBL] [Abstract][Full Text] [Related]
16. Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Fréchette-Viens L; Hadioui M; Wilkinson KJ Talanta; 2019 Aug; 200():156-162. PubMed ID: 31036168 [TBL] [Abstract][Full Text] [Related]
17. Characterization and Quantification of Natural and Anthropogenic Titanium-Containing Particles Using Single-Particle ICP-TOFMS. Karkee H; Gundlach-Graham A Environ Sci Technol; 2023 Sep; 57(37):14058-14070. PubMed ID: 37676008 [TBL] [Abstract][Full Text] [Related]
18. Elemental Characterization of Leaded and Lead-Free Inorganic Primer Gunshot Residue Standards Using Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Szakas SE; Menking-Hoggatt K; Trejos T; Gundlach-Graham A Appl Spectrosc; 2023 Aug; 77(8):873-884. PubMed ID: 36444990 [TBL] [Abstract][Full Text] [Related]
19. Quantification and Clustering of Inorganic Nanoparticles in Wastewater Treatment Plants across Switzerland. Mehrabi K; Kaegi R; Günther D; Gundlach-Graham A Chimia (Aarau); 2021 Aug; 75(7-8):642-646. PubMed ID: 34523405 [TBL] [Abstract][Full Text] [Related]
20. Analytical assessment about the simultaneous quantification of releasable pharmaceutical relevant inorganic nanoparticles in tap water and domestic waste water. Krystek P; Bäuerlein PS; Kooij PJ J Pharm Biomed Anal; 2015 Mar; 106():116-23. PubMed ID: 24856919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]