These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29720584)

  • 1. Exceptional point engineered glass slide for microscopic thermal mapping.
    Zhao H; Chen Z; Zhao R; Feng L
    Nat Commun; 2018 May; 9(1):1764. PubMed ID: 29720584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2.
    Ma J; Delaire O; May AF; Carlton CE; McGuire MA; VanBebber LH; Abernathy DL; Ehlers G; Hong T; Huq A; Tian W; Keppens VM; Shao-Horn Y; Sales BC
    Nat Nanotechnol; 2013 Jun; 8(6):445-51. PubMed ID: 23728075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution total-internal-reflection fluorescence microscopy using periodically nanostructured glass slides.
    Sentenac A; Belkebir K; Giovannini H; Chaumet PC
    J Opt Soc Am A Opt Image Sci Vis; 2009 Dec; 26(12):2550-7. PubMed ID: 19956323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal imaging of nanostructures by quantitative optical phase analysis.
    Baffou G; Bon P; Savatier J; Polleux J; Zhu M; Merlin M; Rigneault H; Monneret S
    ACS Nano; 2012 Mar; 6(3):2452-8. PubMed ID: 22305011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonics Enhanced Smartphone Fluorescence Microscopy.
    Wei Q; Acuna G; Kim S; Vietz C; Tseng D; Chae J; Shir D; Luo W; Tinnefeld P; Ozcan A
    Sci Rep; 2017 May; 7(1):2124. PubMed ID: 28522808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driving down the detection limit in microstructured fiber-based chemical dip sensors.
    Schartner EP; Ebendorff-Heidepriem H; Warren-Smith SC; White RT; Monro TM
    Sensors (Basel); 2011; 11(3):2961-71. PubMed ID: 22163778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging.
    Benninger RK; KoƧ Y; Hofmann O; Requejo-Isidro J; Neil MA; French PM; DeMello AJ
    Anal Chem; 2006 Apr; 78(7):2272-8. PubMed ID: 16579608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping nanoscale thermal transfer in-liquid environment-immersion scanning thermal microscopy.
    Tovee PD; Kolosov OV
    Nanotechnology; 2013 Nov; 24(46):465706. PubMed ID: 24164803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pump absorption and temperature distribution in erbium-doped double-clad fluoride-glass fibers.
    Gorjan M; Marincek M; Copic M
    Opt Express; 2009 Oct; 17(22):19814-22. PubMed ID: 19997203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient One-Step PEG-Silane Passivation of Glass Surfaces for Single-Molecule Fluorescence Studies.
    Gidi Y; Bayram S; Ablenas CJ; Blum AS; Cosa G
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39505-39511. PubMed ID: 30346695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-frequency, 2-D array element using thermoelastic expansion in PDMS.
    Buma T; Spisar M; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Sep; 50(9):1161-76. PubMed ID: 14561032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators.
    Webb RC; Pielak RM; Bastien P; Ayers J; Niittynen J; Kurniawan J; Manco M; Lin A; Cho NH; Malyrchuk V; Balooch G; Rogers JA
    PLoS One; 2015; 10(2):e0118131. PubMed ID: 25658947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified resolution bounds for conventional and stochastic localization fluorescence microscopy.
    Mukamel EA; Schnitzer MJ
    Phys Rev Lett; 2012 Oct; 109(16):168102. PubMed ID: 23215134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers.
    Bethke K; Andrei V; Rademann K
    PLoS One; 2016; 11(3):e0151708. PubMed ID: 26982458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.
    Hwang G; Chung J; Kwon O
    Rev Sci Instrum; 2014 Nov; 85(11):114901. PubMed ID: 25430136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides.
    Eaton SM; Zhang H; Ng ML; Li J; Chen WJ; Ho S; Herman PR
    Opt Express; 2008 Jun; 16(13):9443-58. PubMed ID: 18575510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical waveguides formed by silver ion exchange in Schott SG11 glass for waveguide evanescent field fluorescence microscopy: evanescent images of HEK293 cells.
    Hassanzadeh A; Nitsche M; Armstrong S; Nabavi N; Harrison R; Dixon SJ; Langbein U; Mittler S
    J Biomed Opt; 2010; 15(3):036018. PubMed ID: 20615020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI).
    Dertinger T; Colyer R; Iyer G; Weiss S; Enderlein J
    Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22287-92. PubMed ID: 20018714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.