These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29720708)

  • 21. Decreased birefringence of the superficial zone collagen network in the canine knee (stifle) articular cartilage after long distance running training, detected by quantitative polarised light microscopy.
    Arokoski JP; Hyttinen MM; Lapveteläinen T; Takács P; Kosztáczky B; Módis L; Kovanen V; Helminen H
    Ann Rheum Dis; 1996 Apr; 55(4):253-64. PubMed ID: 8733443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specimen preparation and quantification of collagen birefringence in unstained sections of articular cartilage using image analysis and polarizing light microscopy.
    Király K; Hyttinen MM; Lapveteläinen T; Elo M; Kiviranta I; Dobai J; Módis L; Helminen HJ; Arokoski JP
    Histochem J; 1997 Apr; 29(4):317-27. PubMed ID: 9184847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear optical microscopy of articular cartilage.
    Yeh AT; Hammer-Wilson MJ; Van Sickle DC; Benton HP; Zoumi A; Tromberg BJ; Peavy GM
    Osteoarthritis Cartilage; 2005 Apr; 13(4):345-52. PubMed ID: 15780648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy.
    Ellingsen PG; Lilledahl MB; Aas LM; Davies Cde L; Kildemo M
    J Biomed Opt; 2011 Nov; 16(11):116002. PubMed ID: 22112107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Articular cartilage collagen birefringence is altered concurrent with changes in proteoglycan synthesis during dynamic in vitro loading.
    Király K; Hyttinen MM; Parkkinen JJ; Arokoski JA; Lapveteläinen T; Törrönen K; Kiviranta I; Helminen HJ
    Anat Rec; 1998 May; 251(1):28-36. PubMed ID: 9605217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical Gating of Black Phosphorus for Terahertz Detection.
    Mittendorff M; Suess RJ; Leong E; Murphy TE
    Nano Lett; 2017 Sep; 17(9):5811-5816. PubMed ID: 28820599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subwavelength terahertz imaging via virtual superlensing in the radiating near field.
    Tuniz A; Kuhlmey BT
    Nat Commun; 2023 Oct; 14(1):6393. PubMed ID: 37852953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The collective vibrational modes of dihydropyridine in nifedipine studied by terahertz spectroscopy.
    Wang P; Zhang Y; Zhao J; Yan Y; Liu L; Zhao H; He M
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 292():122404. PubMed ID: 36746041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nano-compositional imaging of the lanthanum silicide system at THz wavelengths.
    Kim RHJ; Pathak AK; Park JM; Imran M; Haeuser SJ; Fei Z; Mudryk Y; Koschny T; Wang J
    Opt Express; 2024 Jan; 32(2):2356-2363. PubMed ID: 38297768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical analysis of the propagation properties of subwavelength semiconductor slit in the terahertz region.
    He XY
    Opt Express; 2009 Aug; 17(17):15359-71. PubMed ID: 19688014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thin terahertz-wave phase shifter by flexible film metamaterial with high transmission.
    Han Z; Ohno S; Tokizane Y; Nawata K; Notake T; Takida Y; Minamide H
    Opt Express; 2017 Dec; 25(25):31186-31196. PubMed ID: 29245795
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sub-terahertz silicon-based on-chip absorption spectroscopy using thin-film model for biological applications.
    Hosseini Farahabadi SA; Entezami M; Abouali H; Amarloo H; Poudineh M; Safavi-Naeini S
    Sci Rep; 2022 Oct; 12(1):17747. PubMed ID: 36273243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Frequency Sheet Conductance of Nanolayered WS
    Ter Huurne SET; Da Cruz AR; van Hoof N; Godiksen RH; Elrafei SA; Curto AG; Flatté ME; Rivas JG
    ACS Appl Nano Mater; 2022 Oct; 5(10):15557-15562. PubMed ID: 36338326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving time and space resolution in electro-optic sampling for near-field terahertz imaging.
    Blanchard F; Tanaka K
    Opt Lett; 2016 Oct; 41(20):4645-4648. PubMed ID: 28005857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage.
    Camacho NP; West P; Torzilli PA; Mendelsohn R
    Biopolymers; 2001; 62(1):1-8. PubMed ID: 11135186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of the most superficial layer of articular cartilage.
    Teshima R; Otsuka T; Takasu N; Yamagata N; Yamamoto K
    J Bone Joint Surg Br; 1995 May; 77(3):460-4. PubMed ID: 7744937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards generation of mJ-level ultrashort THz pulses by optical rectification.
    Fülöp JA; Pálfalvi L; Hoffmann MC; Hebling J
    Opt Express; 2011 Aug; 19(16):15090-7. PubMed ID: 21934870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network.
    Gannon AR; Nagel T; Bell AP; Avery NC; Kelly DJ
    Eur Cell Mater; 2015 Jan; 29():105-21; discussion 121-3. PubMed ID: 25633309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.
    Palukuru UP; Hanifi A; McGoverin CM; Devlin S; Lelkes PI; Pleshko N
    Anal Chim Acta; 2016 Jul; 926():79-87. PubMed ID: 27216396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm.
    Wilson W; Driessen NJ; van Donkelaar CC; Ito K
    Osteoarthritis Cartilage; 2006 Nov; 14(11):1196-202. PubMed ID: 16797194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.