These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29720712)

  • 1. The effect of N-ethyl-N-hydroxyethyl perfluorooctanoamide on wettability alteration of shale reservoir.
    Li Y; Wang Y; Wang K; Gomado F; Wang G; Tang L; Rong X
    Sci Rep; 2018 May; 8(1):6941. PubMed ID: 29720712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and evaluation of properties of
    Wang Y; Li Y; Wang Q; Li Q; Zhang Y; Yuan L
    RSC Adv; 2018 Feb; 8(15):7924-7931. PubMed ID: 35541994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shale Wettability Characteristics via Air/Brines and Air/Oil Contact Angles and Influence of Controlling Factors: A Case Study of Lower Indus Basin, Pakistan.
    Bhutto DK; Shar AM; Abbasi GR; Ansari U
    ACS Omega; 2023 Jan; 8(1):688-701. PubMed ID: 36643511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Effects of Wettability and Pressure in Shale Matrix Nanopore Imbibition during Shut-in Process by Molecular Dynamics Simulations.
    Jiang W; Lv W; Jia N; Lu X; Wang L; Wang K; Mei Y
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving the Super Gas-Wetting Alteration by Functionalized Nano-Silica for Improving Fluid Flowing Capacity in Gas Condensate Reservoirs.
    Li Y; Wang Y; Wang Q; Liu Z; Tang L; Liang L; Zhang C; Li Q; Xu N; Sun J; Shi W
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10996-11006. PubMed ID: 33634694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Fluid Properties on Contact Angles in the Eagle Ford Shale Measured with Spontaneous Imbibition.
    McFarlane J; DiStefano VH; Bingham PR; Bilheux HZ; Cheshire MC; Hale RE; Hussey DS; Jacobson DL; Kolbus L; LaManna JM; Perfect E; Rivers M; Santodonato LJ; Anovitz LM
    ACS Omega; 2021 Dec; 6(48):32618-32630. PubMed ID: 34901610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On wettability of shale rocks.
    Roshan H; Al-Yaseri AZ; Sarmadivaleh M; Iglauer S
    J Colloid Interface Sci; 2016 Aug; 475():104-111. PubMed ID: 27156090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Pyrite Oxidation on the Pore-Structure Characteristics of Shale Reservoir Rocks under the Interaction of Fracturing Fluid.
    Sun Z; Ni Y; Wu Y; Lei Y
    ACS Omega; 2022 Aug; 7(30):26549-26559. PubMed ID: 35936473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Study of the Wettability Characteristic of Thermally Treated Shale.
    Yang J; Gu C; Chen W; Yuan Y; Wang T; Sun J
    ACS Omega; 2020 Oct; 5(40):25891-25898. PubMed ID: 33073114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Shale Wettability Regulation Using Sophisticated Nanoemulsion to Maintain Wellbore Stability in Deep Well Drilling.
    Li Y; Wang M; An Y; Li K; Wei Z; Bo K; Cao P; Guo M
    Langmuir; 2022 Oct; 38(41):12539-12550. PubMed ID: 36213955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Dynamics Simulations of Oil-Water Wetting Models of Organic Matter and Minerals in Shale at the Nanometer Scale.
    Dong Z; Xue H; Li B; Tian S; Lu S; Lu S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):85-97. PubMed ID: 33213615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport Behavior of Oil in Mixed Wettability Shale Nanopores.
    Zhao G; Yao Y; Adenutsi CD; Feng X; Wang L; Wu W
    ACS Omega; 2020 Dec; 5(49):31831-31844. PubMed ID: 33344837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations of Water Transport in Shale Reservoir with Dual-Wettability by Using Monte Carlo Method.
    Liang T; Fan W; Yu B; Yang C; Qu M
    ACS Omega; 2023 Dec; 8(50):48280-48291. PubMed ID: 38144089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and development of CaCO
    Zhong Y; Zhang H; Zhang J
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34077924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influencing Factors of Surfactant Stripping Crude Oil and Spontaneous Imbibition Mechanism of Surfactants in a Tight Reservoir.
    Cao G; Cheng Q; Liu Y; Bu R; Zhang N; Wang P
    ACS Omega; 2022 Jun; 7(22):19010-19020. PubMed ID: 35694475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Influence of Oil Composition, Rock Mineralogy, Aging Time, and Brine Pre-soak on Shale Wettability.
    Saputra IWR; Adebisi O; Ladan EB; Bagareddy A; Sarmah A; Schechter DS
    ACS Omega; 2022 Jan; 7(1):85-100. PubMed ID: 35036681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoropolymer Microemulsion: Preparation and Application in Reservoir Wettability Reversal and Enhancing Oil Recovery.
    Liang L; Wang Y; Liu B; Gong J; Zhang C
    ACS Omega; 2021 Sep; 6(37):24009-24015. PubMed ID: 34568679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization of γ-Alumina and Magnesia Nanoparticles with a Fluorocarbon Surfactant to Promote Ultra-Gas-Wet Surfaces: Experimental and Theoretical Approach.
    Villegas JP; Moncayo-Riascos I; Galeano-Caro D; Riazi M; Franco CA; Cortés FB
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13510-13520. PubMed ID: 32092269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation on the high-pressure sand suspension and adsorption capacity of guar gum fracturing fluid in low-permeability shale reservoirs: factor analysis and mechanism disclosure.
    Li Q; Wang F; Wang Y; Forson K; Cao L; Zhang C; Zhou C; Zhao B; Chen J
    Environ Sci Pollut Res Int; 2022 Jul; 29(35):53050-53062. PubMed ID: 35279752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.