These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 29720772)
1. Dimensional Analysis on Forest Fuel Bed Fire Spread. Yang JC Can J For Res; 2018 Jan; 48(1):105-110. PubMed ID: 29720772 [TBL] [Abstract][Full Text] [Related]
2. [Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling]. Jin S; Liu BF; Di XY; Chu TF; Zhang JL Ying Yong Sheng Tai Xue Bao; 2012 Jan; 23(1):51-9. PubMed ID: 22489479 [TBL] [Abstract][Full Text] [Related]
3. [Fire behavior of Mongolian oak leaves fuel bed under no-wind and zero-slope conditions. II. Analysis of the factors affecting flame length and residence time and related prediction models]. Zhang JL; Liu BF; Di XY; Chu TF; Jin S Ying Yong Sheng Tai Xue Bao; 2012 Nov; 23(11):3149-56. PubMed ID: 23431803 [TBL] [Abstract][Full Text] [Related]
4. Effect of fire spread, flame characteristic, fire intensity on particulate matter 2.5 released from surface fuel combustion of Pinus koraiensis plantation- A laboratory simulation study. Ning J; Yang G; Liu X; Geng D; Wang L; Li Z; Zhang Y; Di X; Sun L; Yu H Environ Int; 2022 Aug; 166():107352. PubMed ID: 35749994 [TBL] [Abstract][Full Text] [Related]
5. Prediction models of fire spread rate of Ren ML; Guo Y; Chen BX; Fan JL; Hu TX; Sun L Ying Yong Sheng Tai Xue Bao; 2023 Aug; 34(8):2091-2100. PubMed ID: 37681373 [TBL] [Abstract][Full Text] [Related]
6. [Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model]. Zhang JL; Liu BF; Chu TF; Di XY; Jin S Ying Yong Sheng Tai Xue Bao; 2012 Jun; 23(6):1495-502. PubMed ID: 22937636 [TBL] [Abstract][Full Text] [Related]
7. Convergence in critical fuel moisture and fire weather thresholds associated with fire activity in the pyroregions of Mediterranean Europe. Resco de Dios V; Cunill Camprubí À; Pérez-Zanón N; Peña JC; Martínez Del Castillo E; Rodrigues M; Yao Y; Yebra M; Vega-García C; Boer MM Sci Total Environ; 2022 Feb; 806(Pt 4):151462. PubMed ID: 34742803 [TBL] [Abstract][Full Text] [Related]
8. [Effects of wind speed on drying processes of fuelbeds composed of Mongolian oak broad-leaves.]. Zhang LB; Sun P; Jin S Ying Yong Sheng Tai Xue Bao; 2016 Nov; 27(11):3463-3468. PubMed ID: 29696842 [TBL] [Abstract][Full Text] [Related]
9. Climate change, fuel and fire behaviour in a eucalypt forest. Matthews S; Sullivan AL; Watson P; Williams RJ Glob Chang Biol; 2012 Oct; 18(10):3212-3223. PubMed ID: 28741824 [TBL] [Abstract][Full Text] [Related]
10. Deciphering the impact of uncertainty on the accuracy of large wildfire spread simulations. Benali A; Ervilha AR; Sá ACL; Fernandes PM; Pinto RMS; Trigo RM; Pereira JMC Sci Total Environ; 2016 Nov; 569-570():73-85. PubMed ID: 27333574 [TBL] [Abstract][Full Text] [Related]
11. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA. Dickinson MB; Hutchinson TF; Dietenberger M; Matt F; Peters MP PLoS One; 2016; 11(8):e0159997. PubMed ID: 27536964 [TBL] [Abstract][Full Text] [Related]
12. Fire danger index efficiency as a function of fuel moisture and fire behavior. Torres FTP; Romeiro JMN; Santos ACA; de Oliveira Neto RR; Lima GS; Zanuncio JC Sci Total Environ; 2018 Aug; 631-632():1304-1310. PubMed ID: 29727954 [TBL] [Abstract][Full Text] [Related]
13. Effects of canopy midstory management and fuel moisture on wildfire behavior. Banerjee T; Heilman W; Goodrick S; Hiers JK; Linn R Sci Rep; 2020 Oct; 10(1):17312. PubMed ID: 33057096 [TBL] [Abstract][Full Text] [Related]
14. Applicability analysis of flame height estimation based on Byram's fireline intensity model under flat and windless conditions. Zhang Y; Luo A Sci Rep; 2024 Feb; 14(1):4441. PubMed ID: 38396250 [TBL] [Abstract][Full Text] [Related]
15. Santa Ana winds and predictors of wildfire progression in southern California. Billmire M; French NHF; Loboda T; Owen RC; Tyner M Int J Wildland Fire; 2014; 23(8):1119-1129. PubMed ID: 34483633 [TBL] [Abstract][Full Text] [Related]
16. Burning rate of merged pool fire on the hollow square tray. Wang C; Guo J; Ding Y; Wen J; Lu S J Hazard Mater; 2015 Jun; 290():78-86. PubMed ID: 25746567 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain. Piqué M; Domènech R Sci Total Environ; 2018 Mar; 618():1539-1546. PubMed ID: 29111258 [TBL] [Abstract][Full Text] [Related]
18. Fire spread predictions: Sweeping uncertainty under the rug. Benali A; Sá ACL; Ervilha AR; Trigo RM; Fernandes PM; Pereira JMC Sci Total Environ; 2017 Aug; 592():187-196. PubMed ID: 28319706 [TBL] [Abstract][Full Text] [Related]
19. Investigating the turbulent dynamics of small-scale surface fires. Desai A; Goodrick S; Banerjee T Sci Rep; 2022 Jun; 12(1):10503. PubMed ID: 35732636 [TBL] [Abstract][Full Text] [Related]
20. Wind Tunnel Experiments to Study Chaparral Crown Fires. Cobian-Iñiguez J; Aminfar A; Chong J; Burke G; Zuniga A; Weise DR; Princevac M J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]