BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29720995)

  • 21. Messenger RNA Modifications in Plants.
    Shen L; Liang Z; Wong CE; Yu H
    Trends Plant Sci; 2019 Apr; 24(4):328-341. PubMed ID: 30745055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corrigendum: Transcriptome-Wide Annotation of m
    Song J; Zhai J; Bian E; Song Y; Yu J; Ma C
    Front Plant Sci; 2018; 9():1762. PubMed ID: 30555500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deepm5C: A deep-learning-based hybrid framework for identifying human RNA N5-methylcytosine sites using a stacking strategy.
    Hasan MM; Tsukiyama S; Cho JY; Kurata H; Alam MA; Liu X; Manavalan B; Deng HW
    Mol Ther; 2022 Aug; 30(8):2856-2867. PubMed ID: 35526094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA 5-methylcytosine modification and its emerging role as an epitranscriptomic mark.
    Gao Y; Fang J
    RNA Biol; 2021 Oct; 18(sup1):117-127. PubMed ID: 34288807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark.
    Trixl L; Lusser A
    Wiley Interdiscip Rev RNA; 2019 Jan; 10(1):e1510. PubMed ID: 30311405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. m5Cpred-XS: A New Method for Predicting RNA m5C Sites Based on XGBoost and SHAP.
    Liu Y; Shen Y; Wang H; Zhang Y; Zhu X
    Front Genet; 2022; 13():853258. PubMed ID: 35432446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. XGBoost framework with feature selection for the prediction of RNA N5-methylcytosine sites.
    Abbas Z; Rehman MU; Tayara H; Zou Q; Chong KT
    Mol Ther; 2023 Aug; 31(8):2543-2551. PubMed ID: 37271991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterizing 5-methylcytosine in the mammalian epitranscriptome.
    Hussain S; Aleksic J; Blanco S; Dietmann S; Frye M
    Genome Biol; 2013 Nov; 14(11):215. PubMed ID: 24286375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting sites of epitranscriptome modifications using unsupervised representation learning based on generative adversarial networks.
    Salekin S; Mostavi M; Chiu YC; Chen Y; Zhang JM; Huang Y
    Front Phys; 2020 Jun; 8():. PubMed ID: 33274189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in mRNA 5-methylcytosine modifications: Detection, effectors, biological functions, and clinical relevance.
    Guo G; Pan K; Fang S; Ye L; Tong X; Wang Z; Xue X; Zhang H
    Mol Ther Nucleic Acids; 2021 Dec; 26():575-593. PubMed ID: 34631286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Dark Side of the Epitranscriptome: Chemical Modifications in Long Non-Coding RNAs.
    Jacob R; Zander S; Gutschner T
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29125541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data.
    Huang D; Song B; Wei J; Su J; Coenen F; Meng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i222-i230. PubMed ID: 34252943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of different computational methods on 5-methylcytosine sites identification.
    Lv H; Zhang ZM; Li SH; Tan JX; Chen W; Lin H
    Brief Bioinform; 2020 May; 21(3):982-995. PubMed ID: 31157855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A deep learning method to more accurately recall known lysine acetylation sites.
    Wu M; Yang Y; Wang H; Xu Y
    BMC Bioinformatics; 2019 Jan; 20(1):49. PubMed ID: 30674277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of High-Throughput RNA Bisulfite Sequencing Data.
    Rieder D; Finotello F
    Methods Mol Biol; 2017; 1562():143-154. PubMed ID: 28349459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational Prediction of Ubiquitination Proteins Using Evolutionary Profiles and Functional Domain Annotation.
    Qiu W; Xu C; Xiao X; Xu D
    Curr Genomics; 2019 Aug; 20(5):389-399. PubMed ID: 32476995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic crosslinking-based methods for enzyme-specified profiling of RNA ribonucleotide modifications.
    Hussain S
    Methods; 2019 Mar; 156():60-65. PubMed ID: 30308313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. m5UPred: A Web Server for the Prediction of RNA 5-Methyluridine Sites from Sequences.
    Jiang J; Song B; Tang Y; Chen K; Wei Z; Meng J
    Mol Ther Nucleic Acids; 2020 Dec; 22():742-747. PubMed ID: 33230471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. m
    Zhen D; Wu Y; Zhang Y; Chen K; Song B; Xu H; Tang Y; Wei Z; Meng J
    Front Cell Dev Biol; 2020; 8():741. PubMed ID: 32850851
    [No Abstract]   [Full Text] [Related]  

  • 40. Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma.
    Singh NP; Bapi RS; Vinod PK
    Comput Biol Med; 2018 Sep; 100():92-99. PubMed ID: 29990647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.