These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29720995)

  • 41. Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6.
    Liu RJ; Long T; Li J; Li H; Wang ED
    Nucleic Acids Res; 2017 Jun; 45(11):6684-6697. PubMed ID: 28531330
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of RNA Methylation Status From Gene Expression Data Using Classification and Regression Methods.
    Xue H; Wei Z; Chen K; Tang Y; Wu X; Su J; Meng J
    Evol Bioinform Online; 2020; 16():1176934320915707. PubMed ID: 32733123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RF-MaloSite and DL-Malosite: Methods based on random forest and deep learning to identify malonylation sites.
    Al-Barakati H; Thapa N; Hiroto S; Roy K; Newman RH; Kc D
    Comput Struct Biotechnol J; 2020; 18():852-860. PubMed ID: 32322367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. m6AGE: A Predictor for N6-Methyladenosine Sites Identification Utilizing Sequence Characteristics and Graph Embedding-Based Geometrical Information.
    Wang Y; Guo R; Huang L; Yang S; Hu X; He K
    Front Genet; 2021; 12():670852. PubMed ID: 34122525
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of m5C methyltransferases in cardiovascular diseases.
    Wang YY; Tian Y; Li YZ; Liu YF; Zhao YY; Chen LH; Zhang C
    Front Cardiovasc Med; 2023; 10():1225014. PubMed ID: 37476573
    [TBL] [Abstract][Full Text] [Related]  

  • 46. miRLocator: A Python Implementation and Web Server for Predicting miRNAs from Pre-miRNA Sequences.
    Zhang T; Ju L; Zhai J; Song Y; Song J; Ma C
    Methods Mol Biol; 2019; 1932():89-97. PubMed ID: 30701493
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detecting Succinylation sites from protein sequences using ensemble support vector machine.
    Ning Q; Zhao X; Bao L; Ma Z; Zhao X
    BMC Bioinformatics; 2018 Jun; 19(1):237. PubMed ID: 29940836
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Machine-Learning-Based m5C Score for the Prognosis Diagnosis of Osteosarcoma.
    Zhang H; Xu P; Song Y
    J Oncol; 2021; 2021():1629318. PubMed ID: 34671397
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Concepts and methods for transcriptome-wide prediction of chemical messenger RNA modifications with machine learning.
    Acera Mateos P; Zhou Y; Zarnack K; Eyras E
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37139545
    [TBL] [Abstract][Full Text] [Related]  

  • 50. iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications.
    Liu K; Chen W
    Bioinformatics; 2020 Jun; 36(11):3336-3342. PubMed ID: 32134472
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RF-GlutarySite: a random forest based predictor for glutarylation sites.
    Al-Barakati HJ; Saigo H; Newman RH; Kc DB
    Mol Omics; 2019 Jun; 15(3):189-204. PubMed ID: 31025681
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A CNN based m5c RNA methylation predictor.
    Aslam I; Shah S; Jabeen S; ELAffendi M; A Abdel Latif A; Ul Haq N; Ali G
    Sci Rep; 2023 Dec; 13(1):21885. PubMed ID: 38081880
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Post-transcriptional regulation by cytosine-5 methylation of RNA.
    García-Vílchez R; Sevilla A; Blanco S
    Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):240-252. PubMed ID: 30593929
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 5-Methylcytosine RNA Methylation in Arabidopsis Thaliana.
    Cui X; Liang Z; Shen L; Zhang Q; Bao S; Geng Y; Zhang B; Leo V; Vardy LA; Lu T; Gu X; Yu H
    Mol Plant; 2017 Nov; 10(11):1387-1399. PubMed ID: 28965832
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Mini-review of the Computational Methods Used in Identifying RNA 5-Methylcytosine Sites.
    Li J; Huang Y; Zhou Y
    Curr Genomics; 2020 Jan; 21(1):3-10. PubMed ID: 32655293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemical Modifications to RNA: A New Layer of Gene Expression Regulation.
    Song J; Yi C
    ACS Chem Biol; 2017 Feb; 12(2):316-325. PubMed ID: 28051309
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution.
    Khoddami V; Yerra A; Mosbruger TL; Fleming AM; Burrows CJ; Cairns BR
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6784-6789. PubMed ID: 30872485
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Research Progress for RNA Modifications in Physiological and Pathological Angiogenesis.
    Chen HM; Li H; Lin MX; Fan WJ; Zhang Y; Lin YT; Wu SX
    Front Genet; 2022; 13():952667. PubMed ID: 35937999
    [TBL] [Abstract][Full Text] [Related]  

  • 59. HAMR: High-Throughput Annotation of Modified Ribonucleotides.
    Vandivier LE; Anderson ZD; Gregory BD
    Methods Mol Biol; 2019; 1870():51-67. PubMed ID: 30539546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ZCMM: A Novel Method Using Z-Curve Theory- Based and Position Weight Matrix for Predicting Nucleosome Positioning.
    Cui Y; Xu Z; Li J
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31569414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.