These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 29721421)
21. Band-gap-graded Cu2ZnSn(S1-x,Se(x))4 solar cells fabricated by an ethanol-based, particulate precursor ink route. Woo K; Kim Y; Yang W; Kim K; Kim I; Oh Y; Kim JY; Moon J Sci Rep; 2013 Oct; 3():3069. PubMed ID: 24166151 [TBL] [Abstract][Full Text] [Related]
22. Achieving Low Karade V; Choi E; Gang MG; Yoo H; Lokhande A; Babar P; Jang JS; Seidel J; Yun JS; Park J; Kim JH ACS Appl Mater Interfaces; 2021 Jan; 13(1):429-437. PubMed ID: 33393763 [TBL] [Abstract][Full Text] [Related]
23. 2D Ti Ma Q; Cui XP; Zhou WH; Kou DX; Zhou ZJ; Meng YN; Qi YF; Yuan SJ; Han LT; Wu SX ACS Appl Mater Interfaces; 2023 Dec; 15(48):55652-55658. PubMed ID: 37991928 [TBL] [Abstract][Full Text] [Related]
24. Plasmonic Local Electric Field-Enhanced Interface toward High-Efficiency Cu Guo Y; Zhu J; Kou D; Zhou W; Zhou Z; Yuan S; Qi Y; Meng Y; Han L; Zheng Z; Wu S ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35653219 [TBL] [Abstract][Full Text] [Related]
25. An ITO-Free Kesterite Solar Cell. Ji Y; Chen W; Yan D; Bullock J; Xu Y; Su Z; Yang W; Laird JS; Zheng T; Wu N; Zha W; Luo Q; Ma CQ; Smith TA; Liu F; Mulvaney P Small; 2024 Feb; 20(6):e2307242. PubMed ID: 37771206 [TBL] [Abstract][Full Text] [Related]
26. Facile Approach for Metallic Precursor Engineering for Efficient Kesterite Thin-Film Solar Cells. Park SW; He M; Jang JS; Kamble GU; Suryawanshi UP; Baek MC; Suryawanshi MP; Gang MG; Park Y; Choi HJ; Hao X; Shin SW; Kim JH ACS Appl Mater Interfaces; 2024 Apr; 16(13):16328-16339. PubMed ID: 38516946 [TBL] [Abstract][Full Text] [Related]
27. Chemically Deposited CdS Buffer/Kesterite Cu Hong CW; Shin SW; Suryawanshi MP; Gang MG; Heo J; Kim JH ACS Appl Mater Interfaces; 2017 Oct; 9(42):36733-36744. PubMed ID: 28980468 [TBL] [Abstract][Full Text] [Related]
28. Further Boosting Solar Cell Performance via Bandgap-Graded Ag Doping in Cu Zhou T; Huang J; Qian S; Wang X; Yang G; Yao B; Li Y; Jiang Y; Liu Y ACS Appl Mater Interfaces; 2023 Jan; 15(1):1073-1084. PubMed ID: 36534121 [TBL] [Abstract][Full Text] [Related]
29. Cu Kauk-Kuusik M; Timmo K; Pilvet M; Muska K; Danilson M; Krustok J; Josepson R; Mikli V; Grossberg-Kuusk M J Mater Chem A Mater; 2023 Nov; 11(44):23640-23652. PubMed ID: 38014362 [TBL] [Abstract][Full Text] [Related]
30. Improving the Device Performance of CZTSSe Thin-Film Solar Cells via Indium Doping. Korade SD; Gour KS; Karade VC; Jang JS; Rehan M; Patil SS; Bhat TS; Patil AP; Yun JH; Park J; Kim JH; Patil PS ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38047907 [TBL] [Abstract][Full Text] [Related]
31. Enhancing the Performance of Aqueous Solution-Processed Cu He W; Sui Y; Zeng F; Wang Z; Wang F; Yao B; Yang L Nanomaterials (Basel); 2020 Jun; 10(7):. PubMed ID: 32605150 [TBL] [Abstract][Full Text] [Related]
32. Unveiling the Role of Ge in CZTSSe Solar Cells by Advanced Micro-To-Atom Scale Characterizations. Cong J; He M; Jang JS; Huang J; Privat K; Chen YS; Li J; Yang L; Green MA; Kim JH; Cairney JM; Hao X Adv Sci (Weinh); 2024 Apr; 11(15):e2305938. PubMed ID: 38342621 [TBL] [Abstract][Full Text] [Related]
33. Modulation of Field-Effect Passivation at the Back Electrode Interface Enabling Efficient Kesterite-Type Cu Song Y; Sun H; Yao B; Li Y; Ding Z; Qin W; Zhang Z; Zhang L; Zhao H; Pan D ACS Appl Mater Interfaces; 2020 Aug; 12(34):38163-38174. PubMed ID: 32846473 [TBL] [Abstract][Full Text] [Related]
35. Kesterite Cu2Zn(Sn,Ge)(S,Se)4 thin film with controlled Ge-doping for photovoltaic application. Zhao W; Pan D; Liu SF Nanoscale; 2016 May; 8(19):10160-5. PubMed ID: 27121893 [TBL] [Abstract][Full Text] [Related]
36. Segmented Control of Selenization Environment for High-Quality Cu Jian Y; Han L; Kong X; Xie T; Kou D; Zhou W; Zhou Z; Yuan S; Meng Y; Qi Y; Liang G; Zhang X; Zheng Z; Wu S Small Methods; 2024 Dec; 8(12):e2400041. PubMed ID: 38766987 [TBL] [Abstract][Full Text] [Related]
37. Passivating Grain Boundaries via Graphene Additive for Efficient Kesterite Solar Cells. Cao L; Zhou Z; Zhou W; Kou D; Meng Y; Yuan S; Qi Y; Han L; Tian Q; Wu S; Liu SF Small; 2024 Mar; 20(9):e2304866. PubMed ID: 37863810 [TBL] [Abstract][Full Text] [Related]
38. Suppressing Deep-Level Trap Toward Over 13% Efficient Solution-Processed Kesterite Solar Cell. Li Y; Jian Y; Huang F; Zhou N; Chai W; Hu J; Zhao J; Su Z; Chen S; Liang G Small; 2024 Aug; 20(35):e2401330. PubMed ID: 38623959 [TBL] [Abstract][Full Text] [Related]
39. Is It Possible To Develop Complex S-Se Graded Band Gap Profiles in Kesterite-Based Solar Cells? Andrade-Arvizu J; Izquierdo-Roca V; Becerril-Romero I; Vidal-Fuentes P; Fonoll-Rubio R; Sánchez Y; Placidi M; Calvo-Barrio L; Vigil-Galán O; Saucedo E ACS Appl Mater Interfaces; 2019 Sep; 11(36):32945-32956. PubMed ID: 31426633 [TBL] [Abstract][Full Text] [Related]
40. Influencing Mechanism of the Selenization Temperature and Time on the Power Conversion Efficiency of Cu2ZnSn(S,Se)4-Based Solar Cells. Xiao ZY; Yao B; Li YF; Ding ZH; Gao ZM; Zhao HF; Zhang LG; Zhang ZZ; Sui YR; Wang G ACS Appl Mater Interfaces; 2016 Jul; 8(27):17334-42. PubMed ID: 27323648 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]