BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29721567)

  • 1. The kinetics of dimethylhydroxypyridinone interactions with iron(iii) and the catalysis of iron(iii) ligand exchange reactions: implications for bacterial iron transport and combination chelation therapies.
    Harrington JM; Mysore MM; Crumbliss AL
    Dalton Trans; 2018 May; 47(20):6954-6964. PubMed ID: 29721567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors that influence siderophoremediated iron bioavailability: catalysis of interligand iron (III) transfer from ferrioxamine B to EDTA by hydroxamic acids.
    Monzyk B; Crumbliss AL
    J Inorg Biochem; 1983 Aug; 19(1):19-39. PubMed ID: 6413650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrier-facilitated bulk liquid membrane transport of iron(III)-siderophore complexes utilizing first coordination sphere recognition.
    Wirgau JI; Crumbliss AL
    Inorg Chem; 2003 Sep; 42(18):5762-70. PubMed ID: 12950227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tripodal peptide hydroxamates as siderophore models. Iron(III) binding with ligands containing H-(alanyl)n-beta-(N-hydroxy)alanyl strands (n = 1-3) anchored by nitrilotriacetic acid.
    Hara Y; Shen L; Tsubouchi A; Akiyama M; Umemoto K
    Inorg Chem; 2000 Oct; 39(22):5074-82. PubMed ID: 11233204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ternary complex formation facilitates a redox mechanism for iron release from a siderophore.
    Mies KA; Wirgau JI; Crumbliss AL
    Biometals; 2006 Apr; 19(2):115-26. PubMed ID: 16718598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination chemistry and biology of chelators for the treatment of iron overload disorders.
    Bernhardt PV
    Dalton Trans; 2007 Aug; (30):3214-20. PubMed ID: 17893764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo-FTIR spectroscopic study of the siderophore ferrioxamine B: spectral analysis and stereochemical implications of iron chelation, pH, and temperature.
    Siebner-Freibach H; Yariv S; Lapides Y; Hadar Y; Chen Y
    J Agric Food Chem; 2005 May; 53(9):3434-43. PubMed ID: 15853384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferrioxamine B analogues: targeting the FoxA uptake system in the pathogenic Yersinia enterocolitica.
    Kornreich-Leshem H; Ziv C; Gumienna-Kontecka E; Arad-Yellin R; Chen Y; Elhabiri M; Albrecht-Gary AM; Hadar Y; Shanzer A
    J Am Chem Soc; 2005 Feb; 127(4):1137-45. PubMed ID: 15669853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron chelators for clinical use.
    Tilbrook GS; Hider RC
    Met Ions Biol Syst; 1998; 35():691-730. PubMed ID: 9444773
    [No Abstract]   [Full Text] [Related]  

  • 10. Kinetics of iron release from ferric binding protein (FbpA): mechanistic implications in bacterial periplasm-to-cytosol Fe3+ transport.
    Dhungana S; Anderson DS; Mietzner TA; Crumbliss AL
    Biochemistry; 2005 Jul; 44(28):9606-18. PubMed ID: 16008346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acyclonucleoside iron chelators of 1-(2-hydroxyethoxy)methyl-2-alkyl-3-hydroxy-4-pyridinones: potential oral iron chelation therapeutics.
    Liu G; Men P; Kenner GH; Miller SC; Bruenger FW
    Nucleosides Nucleotides Nucleic Acids; 2004; 23(3):599-611. PubMed ID: 15113026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chelator-facilitated removal of iron from transferrin: relevance to combined chelation therapy.
    Devanur LD; Evans RW; Evans PJ; Hider RC
    Biochem J; 2008 Jan; 409(2):439-47. PubMed ID: 17919118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidentate pyridinones inhibit the metabolism of nontransferrin-bound iron by hepatocytes and hepatoma cells.
    Chua AC; Ingram HA; Raymond KN; Baker E
    Eur J Biochem; 2003 Apr; 270(8):1689-98. PubMed ID: 12694182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New chelate-forming polymer microspheres carrying dyes as chelators for iron overload.
    Denizli A; Salih B; Piskin E
    J Biomater Sci Polym Ed; 1998; 9(2):175-87. PubMed ID: 9493844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron chelation properties of an extracellular siderophore exochelin MN.
    Dhungana S; Miller MJ; Dong L; Ratledge C; Crumbliss AL
    J Am Chem Soc; 2003 Jun; 125(25):7654-63. PubMed ID: 12812507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct evidence of iron uptake by the Gram-positive siderophore-shuttle mechanism without iron reduction.
    Fukushima T; Allred BE; Raymond KN
    ACS Chem Biol; 2014 Sep; 9(9):2092-100. PubMed ID: 25007174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties.
    Velusamy M; Mayilmurugan R; Palaniandavar M
    Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron chelation properties of an extracellular siderophore exochelin MS.
    Dhungana S; Ratledge C; Crumbliss AL
    Inorg Chem; 2004 Oct; 43(20):6274-83. PubMed ID: 15446873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron overload and chelation.
    Hershko C; Link G; Konijn AM; Ioav Cabantchik Z
    Hematology; 2005; 10 Suppl 1():171-3. PubMed ID: 16188664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition.
    Cowart RE
    Arch Biochem Biophys; 2002 Apr; 400(2):273-81. PubMed ID: 12054438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.