These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 29721790)

  • 1. Efficient removal of benzene in air at atmospheric pressure using a side-on type 172 nm Xe
    Tsuji M; Kawahara T; Uto K; Kamo N; Miyano M; Hayashi JI; Tsuji T
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18980-18989. PubMed ID: 29721790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemical removal of acetaldehyde using 172 nm vacuum ultraviolet excimer lamp in N
    Tsuji M; Miyano M; Kamo N; Kawahara T; Uto K; Hayashi JI; Tsuji T
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11314-11325. PubMed ID: 30798499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical removal of NO(2) by using 172-nm Xe(2) excimer lamp in N(2) or air at atmospheric pressure.
    Tsuji M; Kawahara M; Noda K; Senda M; Sako H; Kamo N; Kawahara T; Kamarudin KS
    J Hazard Mater; 2009 Mar; 162(2-3):1025-33. PubMed ID: 18614279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N2O removal in N2 or air by ArF excimer laser photolysis at atmospheric pressure.
    Tsuji M; Kumagae J; Tsuji T; Hamagami T
    J Hazard Mater; 2004 May; 108(3):189-97. PubMed ID: 15120872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of a highly efficient Xe₂*-excilamp (xenon excimer lamp, λmax=172 nm, η=40%) and qualitative comparison to a low-pressure mercury lamp (LP-Hg, λ=185/254 nm) for water purification.
    Al-Gharabli S; Engeßer P; Gera D; Klein S; Oppenländer T
    Chemosphere; 2016 Feb; 144():811-5. PubMed ID: 26414741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved vacuum-UV (VUV)-initiated photomineralization of organic compounds in water with a xenon excimer flow-through photoreactor (Xe2* lamp, 172 nm) containing an axially centered ceramic oxygenator.
    Oppenländer T; Walddörfer C; Burgbacher J; Kiermeier M; Lachner K; Weinschrott H
    Chemosphere; 2005 Jul; 60(3):302-9. PubMed ID: 15924948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposition of benzene in the RF plasma environment. Part I. Formation of gaseous products and carbon depositions.
    Shih SI; Lin TC; Shih M
    J Hazard Mater; 2004 Dec; 116(3):239-48. PubMed ID: 15601617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical oxidation of As(III) by vacuum-UV lamp irradiation.
    Yoon SH; Lee JH; Oh S; Yang JE
    Water Res; 2008 Jul; 42(13):3455-63. PubMed ID: 18514252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-statistical intermolecular energy transfer from vibrationally excited benzene in a mixed nitrogen-benzene bath.
    Paul AK; West NA; Winner JD; Bowersox RDW; North SW; Hase WL
    J Chem Phys; 2018 Oct; 149(13):134101. PubMed ID: 30292226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of humidity on the plasma-catalytic removal of low-concentration BTX in air.
    Fan X; Zhu T; Wan Y; Yan X
    J Hazard Mater; 2010 Aug; 180(1-3):616-21. PubMed ID: 20471747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical reinvestigation of the O(3P) + C6H6 reaction: quantum chemical and statistical rate calculations.
    Nguyen TL; Peeters J; Vereecken L
    J Phys Chem A; 2007 May; 111(19):3836-49. PubMed ID: 17253662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance evaluation and model analysis of BTEX contaminated air in corn-cob biofilter system.
    Rahul ; Mathur AK; Balomajumder C
    Bioresour Technol; 2013 Apr; 133():166-74. PubMed ID: 23425585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Template-free synthesis of a CdSnO3·3H2O hollow-nanocuboid photocatalyst via a facile microwave hydrothermal method.
    Liu G; Liang S; Wu W; Lin R; Qing N; Liang R; Wu L
    Nanotechnology; 2013 Jun; 24(25):255601. PubMed ID: 23723182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Start-up, performance and optimization of a compost biofilter treating gas-phase mixture of benzene and toluene.
    Rene ER; Kar S; Krishnan J; Pakshirajan K; López ME; Murthy DV; Swaminathan T
    Bioresour Technol; 2015 Aug; 190():529-35. PubMed ID: 25827361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vegetal fiber paper matrix impregnated with silica gel for benzene removal.
    Wu X; Ge T; Dai Y; Wang R
    Indoor Air; 2019 Nov; 29(6):943-955. PubMed ID: 31444988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Removal of formaldehyde with novel packed air purifier and its computational simulation].
    Li YH; Wang K; Zhao QL; Zhang LW; Yuan CS
    Huan Jing Ke Xue; 2008 Sep; 29(9):2659-64. PubMed ID: 19068661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling and computational fluid dynamic behaviour of a biofilter treating benzene.
    Rahul ; Mathur AK; Bala S; Majumder C
    Bioresour Technol; 2012 Dec; 125():200-7. PubMed ID: 23026335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis and oxidation of benzene and cyclopentadiene by NO
    Wang Y; Zhou L; Mao Q; Wang Z; Wei H
    Phys Chem Chem Phys; 2023 May; 25(19):13690-13701. PubMed ID: 37158013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media.
    Mathur AK; Majumder CB; Chatterjee S
    J Hazard Mater; 2007 Sep; 148(1-2):64-74. PubMed ID: 17397996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of H2S from gas stream using combined plasma photolysis technique at atmospheric pressure.
    Huang L; Xia L; Ge X; Jing H; Dong W; Hou H
    Chemosphere; 2012 Jun; 88(2):229-34. PubMed ID: 22436586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.