BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 29721962)

  • 21. The circadian clock system in the mammalian retina.
    Tosini G; Pozdeyev N; Sakamoto K; Iuvone PM
    Bioessays; 2008 Jul; 30(7):624-33. PubMed ID: 18536031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential maturation of circadian rhythms in clock gene proteins in the suprachiasmatic nucleus and the pars tuberalis during mouse ontogeny.
    Ansari N; Agathagelidis M; Lee C; Korf HW; von Gall C
    Eur J Neurosci; 2009 Feb; 29(3):477-89. PubMed ID: 19222558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Circadian Clock in the Retinal Pigment Epithelium Controls the Diurnal Rhythm of Phagocytic Activity.
    DeVera C; Dixon J; Chrenek MA; Baba K; Le YZ; Iuvone PM; Tosini G
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular control of Xenopus retinal circadian rhythms.
    Green CB
    J Neuroendocrinol; 2003 Apr; 15(4):350-4. PubMed ID: 12622833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information.
    Storch KF; Paz C; Signorovitch J; Raviola E; Pawlyk B; Li T; Weitz CJ
    Cell; 2007 Aug; 130(4):730-741. PubMed ID: 17719549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Circadian Clock Gene Bmal1 Controls Thyroid Hormone-Mediated Spectral Identity and Cone Photoreceptor Function.
    Sawant OB; Horton AM; Zucaro OF; Chan R; Bonilha VL; Samuels IS; Rao S
    Cell Rep; 2017 Oct; 21(3):692-706. PubMed ID: 29045837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variations in Phase and Amplitude of Rhythmic Clock Gene Expression across Prefrontal Cortex, Hippocampus, Amygdala, and Hypothalamic Paraventricular and Suprachiasmatic Nuclei of Male and Female Rats.
    Chun LE; Woodruff ER; Morton S; Hinds LR; Spencer RL
    J Biol Rhythms; 2015 Oct; 30(5):417-36. PubMed ID: 26271538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dark-adapted light response in mice is regulated by a circadian clock located in rod photoreceptors.
    Gegnaw ST; Sandu C; Mendoza J; Bergen AA; Felder-Schmittbuhl MP
    Exp Eye Res; 2021 Dec; 213():108807. PubMed ID: 34695438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic interaction of Per1 and Dec1/2 in the regulation of circadian locomotor activity.
    Bode B; Shahmoradi A; Taneja R; Rossner MJ; Oster H
    J Biol Rhythms; 2011 Dec; 26(6):530-40. PubMed ID: 22215611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice.
    Bonaconsa M; Malpeli G; Montaruli A; Carandente F; Grassi-Zucconi G; Bentivoglio M
    Exp Gerontol; 2014 Jul; 55():70-9. PubMed ID: 24674978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm.
    Mieda M; Ono D; Hasegawa E; Okamoto H; Honma K; Honma S; Sakurai T
    Neuron; 2015 Mar; 85(5):1103-16. PubMed ID: 25741730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the suprachiasmatic nucleus but not on behaviour rhythms.
    Ono D; Honma S; Honma K
    Eur J Neurosci; 2015 Dec; 42(12):3128-37. PubMed ID: 26489367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aging Alters Circadian Rhythms in the Mouse Eye.
    Baba K; Tosini G
    J Biol Rhythms; 2018 Aug; 33(4):441-445. PubMed ID: 29940798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurobiology of Circadian Rhythm Regulation.
    Rosenwasser AM; Turek FW
    Sleep Med Clin; 2015 Dec; 10(4):403-12. PubMed ID: 26568118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of mCLOCK and other circadian clock-relevant proteins in the mouse suprachiasmatic nuclei.
    Maywood ES; O'Brien JA; Hastings MH
    J Neuroendocrinol; 2003 Apr; 15(4):329-34. PubMed ID: 12622829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney.
    Hara M; Minami Y; Ohashi M; Tsuchiya Y; Kusaba T; Tamagaki K; Koike N; Umemura Y; Inokawa H; Yagita K
    Sci Rep; 2017 Aug; 7(1):7306. PubMed ID: 28779094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular analysis of mammalian circadian rhythms.
    Reppert SM; Weaver DR
    Annu Rev Physiol; 2001; 63():647-76. PubMed ID: 11181971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peripheral circadian oscillators in mammals.
    Brown SA; Azzi A
    Handb Exp Pharmacol; 2013; (217):45-66. PubMed ID: 23604475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resetting mechanism of central and peripheral circadian clocks in mammals.
    Hirota T; Fukada Y
    Zoolog Sci; 2004 Apr; 21(4):359-68. PubMed ID: 15118222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock.
    Husse J; Leliavski A; Tsang AH; Oster H; Eichele G
    FASEB J; 2014 Nov; 28(11):4950-60. PubMed ID: 25063847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.