These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 29722090)
21. Integration of metformin-loaded MIL-100(Fe) into hydrogel microneedles for prolonged regulation of blood glucose levels. Feng M; Li Y; Sun Y; Liu T; Yunusov KE; Jiang G Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38670077 [TBL] [Abstract][Full Text] [Related]
22. Dissolving Polymer Microneedles for Transdermal Delivery of Insulin. Zhang N; Zhou X; Liu L; Zhao L; Xie H; Yang Z Front Pharmacol; 2021; 12():719905. PubMed ID: 34630098 [TBL] [Abstract][Full Text] [Related]
23. PVA-based bulk microneedles capable of high insulin loading and pH-triggered degradation for multi-responsive and sustained hypoglycemic therapy. Ma Y; Wang W; He M; Liu Y; Li C; Zhong Y; Bu Q; Huang D; Qian H; Chen W Biomater Sci; 2024 Jan; 12(2):507-517. PubMed ID: 38088652 [TBL] [Abstract][Full Text] [Related]
24. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: in vitro and in vivo studies. Liang HC; Chang WH; Lin KJ; Sung HW J Biomed Mater Res A; 2003 May; 65(2):271-82. PubMed ID: 12734822 [TBL] [Abstract][Full Text] [Related]
25. Composition-Engineered Metal-Organic Framework-Based Microneedles for Glucose-Mediated Transdermal Insulin Delivery. Yang XX; Feng P; Cao J; Liu W; Tang Y ACS Appl Mater Interfaces; 2020 Mar; 12(12):13613-13621. PubMed ID: 32138507 [TBL] [Abstract][Full Text] [Related]
26. Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery. El-Sayed N; Vaut L; Schneider M Eur J Pharm Biopharm; 2020 Sep; 154():166-174. PubMed ID: 32659323 [TBL] [Abstract][Full Text] [Related]
27. A dissolving and glucose-responsive insulin-releasing microneedle patch for type 1 diabetes therapy. Zhang Y; Wu M; Tan D; Liu Q; Xia R; Chen M; Liu Y; Xue L; Lei Y J Mater Chem B; 2021 Jan; 9(3):648-657. PubMed ID: 33306077 [TBL] [Abstract][Full Text] [Related]
28. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Yu W; Jiang G; Zhang Y; Liu D; Xu B; Zhou J Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():187-196. PubMed ID: 28866156 [TBL] [Abstract][Full Text] [Related]
29. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Zhang Y; Jiang G; Yu W; Liu D; Xu B Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():18-26. PubMed ID: 29407146 [TBL] [Abstract][Full Text] [Related]
30. Inkjet printing of insulin microneedles for transdermal delivery. Ross S; Scoutaris N; Lamprou D; Mallinson D; Douroumis D Drug Deliv Transl Res; 2015 Aug; 5(4):451-61. PubMed ID: 26242687 [TBL] [Abstract][Full Text] [Related]
32. In vivo safety assessment, biodistribution and toxicology of polyvinyl alcohol microneedles with 160-day uninterruptedly applications in mice. Zhang XP; Wang BB; Li WX; Fei WM; Cui Y; Guo XD Eur J Pharm Biopharm; 2021 Mar; 160():1-8. PubMed ID: 33484865 [TBL] [Abstract][Full Text] [Related]
33. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin. Seong KY; Seo MS; Hwang DY; O'Cearbhaill ED; Sreenan S; Karp JM; Yang SY J Control Release; 2017 Nov; 265():48-56. PubMed ID: 28344013 [TBL] [Abstract][Full Text] [Related]
34. Transdermal delivery of sinapine thiocyanate by gelatin microspheres and hyaluronic acid microneedles for allergic asthma in guinea pigs. Feng Y; Chang S; Jing Z; Jiang H; Liu Y; Qin G Int J Pharm; 2022 Jul; 623():121899. PubMed ID: 35710072 [TBL] [Abstract][Full Text] [Related]
35. Genipin-crosslinked chitosan/gelatin blends for biomedical applications. Chiono V; Pulieri E; Vozzi G; Ciardelli G; Ahluwalia A; Giusti P J Mater Sci Mater Med; 2008 Feb; 19(2):889-98. PubMed ID: 17665102 [TBL] [Abstract][Full Text] [Related]
36. Formulation of hydrophobic peptides for skin delivery via coated microneedles. Zhao X; Coulman SA; Hanna SJ; Wong FS; Dayan CM; Birchall JC J Control Release; 2017 Nov; 265():2-13. PubMed ID: 28286315 [TBL] [Abstract][Full Text] [Related]
37. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold. Poursamar SA; Lehner AN; Azami M; Ebrahimi-Barough S; Samadikuchaksaraei A; Antunes AP Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():1-9. PubMed ID: 27040189 [TBL] [Abstract][Full Text] [Related]
39. Design of genipin-crosslinked microgels from concanavalin A and glucosyloxyethyl acrylated chitosan for glucose-responsive insulin delivery. Yin R; Wang K; Du S; Chen L; Nie J; Zhang W Carbohydr Polym; 2014 Mar; 103():369-76. PubMed ID: 24528742 [TBL] [Abstract][Full Text] [Related]
40. Controlled delivery of basal insulin from phase-sensitive polymeric systems after subcutaneous administration: in vitro release, stability, biocompatibility, in vivo absorption, and bioactivity of insulin. Al-Tahami K; Oak M; Singh J J Pharm Sci; 2011 Jun; 100(6):2161-71. PubMed ID: 21491440 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]