These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 29722212)
21. Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees. Ford CR; Goranson CE; Mitchell RJ; Will RE; Teskey RO Tree Physiol; 2004 Sep; 24(9):941-50. PubMed ID: 15234892 [TBL] [Abstract][Full Text] [Related]
22. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. James SA; Clearwater MJ; Meinzer FC; Goldstein G Tree Physiol; 2002 Mar; 22(4):277-83. PubMed ID: 11874724 [TBL] [Abstract][Full Text] [Related]
23. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Sterck FJ; Zweifel R; Sass-Klaassen U; Chowdhury Q Tree Physiol; 2008 Apr; 28(4):529-36. PubMed ID: 18244940 [TBL] [Abstract][Full Text] [Related]
24. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oren R; Pataki DE Oecologia; 2001 May; 127(4):549-559. PubMed ID: 28547493 [TBL] [Abstract][Full Text] [Related]
25. Estimating conductive sapwood area in diffuse and ring porous trees with electronic resistance tomography. Benson AR; Koeser AK; Morgenroth J Tree Physiol; 2019 Mar; 39(3):484-494. PubMed ID: 30304488 [TBL] [Abstract][Full Text] [Related]
26. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Renninger HJ; Carlo N; Clark KL; Schäfer KV Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856 [TBL] [Abstract][Full Text] [Related]
27. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species. Gebauer T; Horna V; Leuschner C Tree Physiol; 2008 Dec; 28(12):1821-30. PubMed ID: 19193565 [TBL] [Abstract][Full Text] [Related]
28. [Effects of tree diameter at breast height and soil moisture on transpiration of Schima superba based on sap flow pattern and normalization]. Mei TT; Zhao P; Wang Q; Cai XA; Yu MH; Zhu LW; Zou LL; Zeng XP Ying Yong Sheng Tai Xue Bao; 2010 Oct; 21(10):2457-64. PubMed ID: 21328929 [TBL] [Abstract][Full Text] [Related]
29. Environmental controls on sap flow in a northern hardwood forest. Bovard BD; Curtis PS; Vogel CS; Su HB; Schmid HP Tree Physiol; 2005 Jan; 25(1):31-8. PubMed ID: 15519983 [TBL] [Abstract][Full Text] [Related]
30. Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring. Tognetti R; Longobucco A; Miglietta F; Raschi A Tree Physiol; 1999 Apr; 19(4_5):261-270. PubMed ID: 12651569 [TBL] [Abstract][Full Text] [Related]
31. [Dynamic changes of Robinia pseudoacacia sap flow in hilly-gully region of Loess Plateau]. Hu W; Du F; Xu XX; Zhang LD Ying Yong Sheng Tai Xue Bao; 2010 Jun; 21(6):1367-73. PubMed ID: 20873607 [TBL] [Abstract][Full Text] [Related]
32. [Effect of thinning intensities on fruiting regularities of Quercus liaotungensis forests in Huang-long and Qiaoshan mountains.]. Huang CZ; Zhang WH; Li G; Yu SC; You JJ Ying Yong Sheng Tai Xue Bao; 2016 Nov; 27(11):3413-3419. PubMed ID: 29696836 [TBL] [Abstract][Full Text] [Related]
33. Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use. Ford CR; McGuire MA; Mitchell RJ; Teskey RO Tree Physiol; 2004 Mar; 24(3):241-9. PubMed ID: 14704134 [TBL] [Abstract][Full Text] [Related]
34. [Water use of re-vegetation pioneer tree species Schima superba and Acacia mangium in hilly land of South China]. Zhang ZZ; Zhao P; Ni GY; Zhu LW; Zhao XH; Zhao PQ; Niu JF Ying Yong Sheng Tai Xue Bao; 2014 Apr; 25(4):931-9. PubMed ID: 25011282 [TBL] [Abstract][Full Text] [Related]
35. [Environmental responses of four urban tree species transpiration in northern China]. Chen LX; Li ZD; Zhang ZQ; Zhang WJ; Zhang XF; Dong KY; Wang GY Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):2861-70. PubMed ID: 20353049 [TBL] [Abstract][Full Text] [Related]
36. [Canopy transpiration of Larix principis-rupprechtii plantation and its impact factors in diffe-rent slope locations at the south side of Liupan Mountains, China.]. Wang YN; Cao GX; Wang YH; Xu LH; Zhang WJ; Wang XJ Ying Yong Sheng Tai Xue Bao; 2018 May; 29(5):1503-1514. PubMed ID: 29797883 [TBL] [Abstract][Full Text] [Related]
37. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Oren R; Phillips N; Ewers BE; Pataki DE; Megonigal JP Tree Physiol; 1999 May; 19(6):337-347. PubMed ID: 12651555 [TBL] [Abstract][Full Text] [Related]
38. [Low sap flow of DU MG; Wang SJ; Fan J; Ge HY Ying Yong Sheng Tai Xue Bao; 2022 Apr; 33(4):931-938. PubMed ID: 35543044 [TBL] [Abstract][Full Text] [Related]
39. [Difference of water relationships of poplar trees in Zhangbei County, Hebei, China based on stable isotope and thermal dissipation method]. Miao B; Meng P; Zhang JS; He FJ; Sun SJ Ying Yong Sheng Tai Xue Bao; 2017 Jul; 28(7):2111-2118. PubMed ID: 29741039 [TBL] [Abstract][Full Text] [Related]
40. Stomatal ozone uptake of a Quercus serrata stand based on sap flow measurements with calibrated thermal dissipation sensors. Tanaka R; Chiu CW; Gomi T; Matsuda K; Izuta T; Watanabe M Sci Total Environ; 2023 Aug; 888():164005. PubMed ID: 37201825 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]