These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 29722448)
1. Titanium dioxide nanoparticles translocate through differentiated Caco-2 cell monolayers, without disrupting the barrier functionality or inducing genotoxic damage. Vila L; García-Rodríguez A; Marcos R; Hernández A J Appl Toxicol; 2018 Sep; 38(9):1195-1205. PubMed ID: 29722448 [TBL] [Abstract][Full Text] [Related]
2. Assessing the effects of silver nanoparticles on monolayers of differentiated Caco-2 cells, as a model of intestinal barrier. Vila L; García-Rodríguez A; Cortés C; Marcos R; Hernández A Food Chem Toxicol; 2018 Jun; 116(Pt B):1-10. PubMed ID: 29626574 [TBL] [Abstract][Full Text] [Related]
3. Effects of cerium oxide nanoparticles on differentiated/undifferentiated human intestinal Caco-2 cells. Vila L; García-Rodríguez A; Cortés C; Velázquez A; Xamena N; Sampayo-Reyes A; Marcos R; Hernández A Chem Biol Interact; 2018 Mar; 283():38-46. PubMed ID: 29378162 [TBL] [Abstract][Full Text] [Related]
4. Biological effect of food additive titanium dioxide nanoparticles on intestine: an in vitro study. Song ZM; Chen N; Liu JH; Tang H; Deng X; Xi WS; Han K; Cao A; Liu Y; Wang H J Appl Toxicol; 2015 Oct; 35(10):1169-78. PubMed ID: 26106068 [TBL] [Abstract][Full Text] [Related]
5. Long-term exposures to low doses of titanium dioxide nanoparticles induce cell transformation, but not genotoxic damage in BEAS-2B cells. Vales G; Rubio L; Marcos R Nanotoxicology; 2015; 9(5):568-78. PubMed ID: 25238462 [TBL] [Abstract][Full Text] [Related]
6. Caco-2 in vitro model of human gastrointestinal tract for studying the absorption of titanium dioxide and silver nanoparticles from seafood. Taboada-López MV; Leal-Martínez BH; Domínguez-González R; Bermejo-Barrera P; Taboada-Antelo P; Moreda-Piñeiro A Talanta; 2021 Oct; 233():122494. PubMed ID: 34215112 [TBL] [Abstract][Full Text] [Related]
7. DNA Damage and Apoptosis as In-Vitro Effect Biomarkers of Titanium Dioxide Nanoparticles (TiO Ferrante M; Grasso A; Salemi R; Libra M; Tomasello B; Fiore M; Copat C Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767368 [TBL] [Abstract][Full Text] [Related]
8. Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Chen Z; Wang Y; Ba T; Li Y; Pu J; Chen T; Song Y; Gu Y; Qian Q; Yang J; Jia G Toxicol Lett; 2014 May; 226(3):314-9. PubMed ID: 24594277 [TBL] [Abstract][Full Text] [Related]
11. Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and Comet assay. Woodruff RS; Li Y; Yan J; Bishop M; Jones MY; Watanabe F; Biris AS; Rice P; Zhou T; Chen T J Appl Toxicol; 2012 Nov; 32(11):934-43. PubMed ID: 22744910 [TBL] [Abstract][Full Text] [Related]
12. In vitro intestinal epithelium responses to titanium dioxide nanoparticles. Pedata P; Ricci G; Malorni L; Venezia A; Cammarota M; Volpe MG; Iannaccone N; Guida V; Schiraldi C; Romano M; Iacomino G Food Res Int; 2019 May; 119():634-642. PubMed ID: 30884698 [TBL] [Abstract][Full Text] [Related]
13. DNA damage and oxidative stress induced at low doses by the fungicide hexachlorobenzene in human intestinal Caco-2 cells. Chalouati H; Boutet E; Metais B; Fouche E; Ben Sâad MM; Gamet-Payrastre L Toxicol Mech Methods; 2015; 25(6):448-58. PubMed ID: 26365763 [TBL] [Abstract][Full Text] [Related]
14. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. Carmona ER; Escobar B; Vales G; Marcos R Mutat Res Genet Toxicol Environ Mutagen; 2015 Jan; 778():12-21. PubMed ID: 25726144 [TBL] [Abstract][Full Text] [Related]
15. Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells. Abbott Chalew TE; Schwab KJ Cell Biol Toxicol; 2013 Apr; 29(2):101-16. PubMed ID: 23468361 [TBL] [Abstract][Full Text] [Related]
16. Different mechanisms are involved in oxidative DNA damage and genotoxicity induction by ZnO and TiO2 nanoparticles in human colon carcinoma cells. Zijno A; De Angelis I; De Berardis B; Andreoli C; Russo MT; Pietraforte D; Scorza G; Degan P; Ponti J; Rossi F; Barone F Toxicol In Vitro; 2015 Oct; 29(7):1503-12. PubMed ID: 26079941 [TBL] [Abstract][Full Text] [Related]
17. Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents. Armand L; Tarantini A; Beal D; Biola-Clier M; Bobyk L; Sorieul S; Pernet-Gallay K; Marie-Desvergne C; Lynch I; Herlin-Boime N; Carriere M Nanotoxicology; 2016 Sep; 10(7):913-23. PubMed ID: 26785166 [TBL] [Abstract][Full Text] [Related]
18. Cell uptake and oral absorption of titanium dioxide nanoparticles. Janer G; Mas del Molino E; Fernández-Rosas E; Fernández A; Vázquez-Campos S Toxicol Lett; 2014 Jul; 228(2):103-10. PubMed ID: 24793716 [TBL] [Abstract][Full Text] [Related]
19. Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress. Dorier M; Béal D; Marie-Desvergne C; Dubosson M; Barreau F; Houdeau E; Herlin-Boime N; Carriere M Nanotoxicology; 2017 Aug; 11(6):751-761. PubMed ID: 28671030 [TBL] [Abstract][Full Text] [Related]
20. Assessment of evidence for nanosized titanium dioxide-generated DNA strand breaks and oxidatively damaged DNA in cells and animal models. Møller P; Jensen DM; Wils RS; Andersen MHG; Danielsen PH; Roursgaard M Nanotoxicology; 2017; 11(9-10):1237-1256. PubMed ID: 29172839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]