BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 29722521)

  • 41. Aptamer-mediated Plasmodium-specific diagnosis of malaria.
    Cheung YW; Dirkzwager RM; Wong WC; Cardoso J; D'Arc Neves Costa J; Tanner JA
    Biochimie; 2018 Feb; 145():131-136. PubMed ID: 29080831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro selection of tacrolimus binding aptamer by systematic evolution of ligands by exponential enrichment method for the development of a fluorescent aptasensor for sensitive detection of tacrolimus.
    Mansouri A; Abnous K; Nabavinia MS; Ramezani M; Taghdisi SM
    J Pharm Biomed Anal; 2020 Jan; 177():112853. PubMed ID: 31499431
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selection and truncation of aptamers for ultrasensitive detection of sulfamethazine using a fluorescent biosensor based on graphene oxide.
    Kou Q; Wu P; Sun Q; Li C; Zhang L; Shi H; Wu J; Wang Y; Yan X; Le T
    Anal Bioanal Chem; 2021 Jan; 413(3):901-909. PubMed ID: 33184760
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor.
    Gu H; Duan N; Wu S; Hao L; Xia Y; Ma X; Wang Z
    Sci Rep; 2016 Feb; 6():21665. PubMed ID: 26898784
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selection and application of ssDNA aptamers against spermine based on Capture-SELEX.
    Tian H; Duan N; Wu S; Wang Z
    Anal Chim Acta; 2019 Nov; 1081():168-175. PubMed ID: 31446954
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics.
    Wang Y; Gan N; Zhou Y; Li T; Cao Y; Chen Y
    Biosens Bioelectron; 2017 Jan; 87():508-513. PubMed ID: 27596250
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nuclease-assisted target recycling signal amplification strategy for graphene quantum dot-based fluorescent detection of marine biotoxins.
    Gu H; Hao L; Ye H; Ma P; Wang Z
    Mikrochim Acta; 2021 Mar; 188(4):118. PubMed ID: 33687572
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluorescence sensing of adenosine deaminase based on adenosine induced self-assembly of aptamer structures.
    Feng T; Ma H
    Analyst; 2013 Apr; 138(8):2438-42. PubMed ID: 23462984
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selection of a DNA aptamer that binds 8-OHdG using GMP-agarose.
    Miyachi Y; Shimizu N; Ogino C; Fukuda H; Kondo A
    Bioorg Med Chem Lett; 2009 Jul; 19(13):3619-22. PubMed ID: 19450981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aptamer-graphene oxide for highly sensitive dual electrochemical detection of Plasmodium lactate dehydrogenase.
    Jain P; Das S; Chakma B; Goswami P
    Anal Biochem; 2016 Dec; 514():32-37. PubMed ID: 27641111
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography.
    Hedayati Ch M; Amani J; Sedighian H; Amin M; Salimian J; Halabian R; Imani Fooladi AA
    J Mol Recognit; 2016 Sep; 29(9):436-45. PubMed ID: 27091327
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori.
    Liu Z; Su X
    Biosens Bioelectron; 2017 Jan; 87():66-72. PubMed ID: 27522014
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SiC-functionalized fluorescent aptasensor for determination of Proteus mirabilis.
    Yao W; Shi J; Ling J; Guo Y; Ding C; Ding Y
    Mikrochim Acta; 2020 Jun; 187(7):406. PubMed ID: 32594319
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Online reaction based single-step capillary electrophoresis-systematic evolution of ligands by exponential enrichment for ssDNA aptamers selection.
    Zhu C; Li L; Yang G; Fang S; Liu M; Ghulam M; Hao C; Chen Y; Qu F
    Anal Chim Acta; 2019 Sep; 1070():112-122. PubMed ID: 31103164
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A fluorometric turn-on aptasensor for mucin 1 based on signal amplification via a hybridization chain reaction and the interaction between a luminescent ruthenium(II) complex and CdZnTeS quantum dots.
    Li Z; Mao G; Du M; Tian S; Niu L; Ji X; He Z
    Mikrochim Acta; 2019 Mar; 186(4):233. PubMed ID: 30852673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A fluorescence biosensor based on single-stranded DNA and carbon quantum dots for acrylamide detection.
    Wei Q; Zhang P; Liu T; Pu H; Sun DW
    Food Chem; 2021 Sep; 356():129668. PubMed ID: 33827044
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selection, Characterization, and Application of ssDNA Aptamer against Furaneol.
    Komarova N; Andrianova M; Glukhov S; Kuznetsov A
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30513671
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen.
    Eissa S; Zourob M
    Biosens Bioelectron; 2017 May; 91():169-174. PubMed ID: 28006685
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of gold nanoparticles in different aggregation states on the fluorescence of carbon dots and its application.
    Qin X; Lu Y; Bian M; Xiao Z; Zhang Y; Yuan Y
    Anal Chim Acta; 2019 Dec; 1091():119-126. PubMed ID: 31679565
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recognition and detection of histamine in foods using aptamer modified fluorescence polymer dots sensors.
    Wu G; Ding Z; Dou X; Chen Z; Xie J
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124452. PubMed ID: 38761559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.