These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29722535)

  • 1. In Situ Preparation of Stabilized Iron Sulfide Nanoparticle-Impregnated Alginate Composite for Selenite Remediation.
    Wu J; Zeng RJ
    Environ Sci Technol; 2018 Jun; 52(11):6487-6496. PubMed ID: 29722535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr (VI) removal as an example.
    Wu J; Wang XB; Zeng RJ
    J Hazard Mater; 2017 Jul; 333():275-284. PubMed ID: 28371713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Liang Q; Qian T; Zhao D
    Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of iron-crosslinked sodium alginate for efficient sulfide control and reduction of oilfield produced water.
    Wu J; Zeng RJ; Zhang F; Yuan Z
    Water Res; 2019 May; 154():12-20. PubMed ID: 30763871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing biochar to decorate nanoscale FeS for the highly effective decontamination of Se(IV) from simulated wastewater.
    Fu C; He Y; Yang C; He J; Sun L; Pan Y; Deng L; Huang R; Li M; Chang K
    Ecotoxicol Environ Saf; 2023 Sep; 263():115285. PubMed ID: 37517306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study.
    Finck N; Dardenne K
    J Contam Hydrol; 2016 May; 188():44-51. PubMed ID: 27010738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Removal of Selenite and Selenate by Nanosized Zerovalent Iron in Anoxic Systems: The Overlooked Role of Selenite.
    Wu J; Zhao J; Li H; Miao L; Hou J; Xing B
    Environ Sci Technol; 2021 May; 55(9):6299-6308. PubMed ID: 33843193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.
    Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X
    Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foliar Application of Reaction Products Derived from Selenite Removal by Iron Monosulfide for
    Wu J; Huang G; Cao X; Dai Y; Miao L; Hou J; Xing B
    Environ Sci Technol; 2022 Nov; 56(22):16281-16291. PubMed ID: 36282037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Fe(II) on the Se(IV) sorption under oxic/anoxic conditions using bentonite.
    He J; Shi Y; Yang X; Zhou W; Li Y; Liu C
    Chemosphere; 2018 Feb; 193():376-384. PubMed ID: 29149714
    [No Abstract]   [Full Text] [Related]  

  • 11. Application of iron sulfide particles for groundwater and soil remediation: A review.
    Gong Y; Tang J; Zhao D
    Water Res; 2016 Feb; 89():309-20. PubMed ID: 26707732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles.
    Xiong Z; He F; Zhao D; Barnett MO
    Water Res; 2009 Dec; 43(20):5171-9. PubMed ID: 19748651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite.
    Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B
    Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive sequestration of pertechnetate (⁹⁹TcO₄⁻) by nano zerovalent iron (nZVI) transformed by abiotic sulfide.
    Fan D; Anitori RP; Tebo BM; Tratnyek PG; Lezama Pacheco JS; Kukkadapu RK; Engelhard MH; Bowden ME; Kovarik L; Arey BW
    Environ Sci Technol; 2013 May; 47(10):5302-10. PubMed ID: 23611018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles.
    Gong Y; Liu Y; Xiong Z; Kaback D; Zhao D
    Nanotechnology; 2012 Jul; 23(29):294007. PubMed ID: 22743738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil.
    Tan Y; Yao R; Wang R; Wang D; Wang G; Zheng S
    Microb Cell Fact; 2016 Sep; 15(1):157. PubMed ID: 27630128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dynamic effects of commonly co-existing anions on the removal of selenite from groundwater by nanoscale zero-valent iron].
    Yang WJ; Guo YQ; Du ED
    Huan Jing Ke Xue; 2014 May; 35(5):1793-7. PubMed ID: 25055668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green remediation of mercury-contaminated soil using iron sulfide nanoparticles: Immobilization performance and mechanisms, effects on soil properties, and life cycle assessment.
    Lin D; Hu G; Li H; Wu F; Li L; Yang G; Zhuang L; Gong Y
    Sci Total Environ; 2024 Sep; 944():173928. PubMed ID: 38871308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution and surface chemistry of the Se(IV)-Fe(0) reactions: Effect of initial solution pH.
    Xia X; Ling L; Zhang WX
    Chemosphere; 2017 Feb; 168():1597-1603. PubMed ID: 27939658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic study of Se(IV) removal from water by reductive precipitation using sulfide.
    Jung B; Safan A; Batchelor B; Abdel-Wahab A
    Chemosphere; 2016 Nov; 163():351-358. PubMed ID: 27552695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.