BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29722544)

  • 1. Histone acetylation maps in aged mice developmentally exposed to lead: epigenetic drift and Alzheimer-related genes.
    Eid A; Bihaqi SW; Hemme C; Gaspar JM; Hart RP; Zawia NH
    Epigenomics; 2018 May; 10(5):573-583. PubMed ID: 29722544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alzheimer's disease biomarkers and epigenetic intermediates following exposure to Pb in vitro.
    Bihaqi SW; Zawia NH
    Curr Alzheimer Res; 2012 Jun; 9(5):555-62. PubMed ID: 22272629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early life exposure to lead (Pb) and changes in DNA methylation: relevance to Alzheimer's disease.
    Bihaqi SW
    Rev Environ Health; 2019 Jun; 34(2):187-195. PubMed ID: 30710487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early-life Pb exposure as a potential risk factor for Alzheimer's disease: are there hazards for the Mexican population?
    Chin-Chan M; Cobos-Puc L; Alvarado-Cruz I; Bayar M; Ermolaeva M
    J Biol Inorg Chem; 2019 Dec; 24(8):1285-1303. PubMed ID: 31773268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infant exposure to lead (Pb) and epigenetic modifications in the aging primate brain: implications for Alzheimer's disease.
    Bihaqi SW; Huang H; Wu J; Zawia NH
    J Alzheimers Dis; 2011; 27(4):819-33. PubMed ID: 21891863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats.
    Luo M; Xu Y; Cai R; Tang Y; Ge MM; Liu ZH; Xu L; Hu F; Ruan DY; Wang HL
    Toxicol Lett; 2014 Feb; 225(1):78-85. PubMed ID: 24291742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Epigenetic mechanisms of Alzheimer's disease and related drug research].
    Gong HC; Wang YL; Wang HW
    Yao Xue Xue Bao; 2013 Jul; 48(7):1005-13. PubMed ID: 24133967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA methylation and histone post-translational modification stability in post-mortem brain tissue.
    Jarmasz JS; Stirton H; Davie JR; Del Bigio MR
    Clin Epigenetics; 2019 Jan; 11(1):5. PubMed ID: 30635019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia mimetic deferoxamine influences the expression of histone acetylation- and DNA methylation-associated genes in osteoblasts.
    Vrtačnik P; Marc J; Ostanek B
    Connect Tissue Res; 2015 Jun; 56(3):228-35. PubMed ID: 25674819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex- and brain region- specific effects of prenatal stress and lead exposure on permissive and repressive post-translational histone modifications from embryonic development through adulthood.
    Varma G; Sobolewski M; Cory-Slechta DA; Schneider JS
    Neurotoxicology; 2017 Sep; 62():207-217. PubMed ID: 28712943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic modifications associated with pathophysiological effects of lead exposure.
    Khalid M; Abdollahi M
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2019; 37(4):235-287. PubMed ID: 31402779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental lead exposure and lifespan alterations in epigenetic regulators and their correspondence to biomarkers of Alzheimer's disease.
    Eid A; Bihaqi SW; Renehan WE; Zawia NH
    Alzheimers Dement (Amst); 2016; 2():123-31. PubMed ID: 27239543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of buffalo (Bubalus bubalis) donor cells with trichostatin A and 5-aza-2'-deoxycytidine alters their growth characteristics, gene expression and epigenetic status and improves the in vitro developmental competence, quality and epigenetic status of cloned embryos.
    Saini M; Selokar NL; Agrawal H; Singla SK; Chauhan MS; Manik RS; Palta P
    Reprod Fertil Dev; 2016 Apr; 28(6):824-37. PubMed ID: 25409339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents.
    Godino A; Jayanthi S; Cadet JL
    Epigenetics; 2015; 10(7):574-80. PubMed ID: 26023847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic mechanisms in Alzheimer's disease: implications for pathogenesis and therapy.
    Wang J; Yu JT; Tan MS; Jiang T; Tan L
    Ageing Res Rev; 2013 Sep; 12(4):1024-41. PubMed ID: 23688931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain.
    Tyler CR; Hafez AK; Solomon ER; Allan AM
    Toxicol Appl Pharmacol; 2015 Oct; 288(1):40-51. PubMed ID: 26193056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic Basis of Lead-Induced Neurological Disorders.
    Wang T; Zhang J; Xu Y
    Int J Environ Res Public Health; 2020 Jul; 17(13):. PubMed ID: 32645824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic drugs in Alzheimer's disease.
    Cuadrado-Tejedor M; Oyarzabal J; Lucas MP; Franco R; García-Osta A
    Biomol Concepts; 2013 Oct; 4(5):433-45. PubMed ID: 25436752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic regulation of EC-SOD expression in aging lung fibroblasts: Role of histone acetylation.
    Roman J; Zhu J; Ritzenthaler JD; Zelko IN
    Free Radic Biol Med; 2017 Nov; 112():212-223. PubMed ID: 28757400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic modulations in early endothelial cells and DNA hypermethylation in human skin after sulfur mustard exposure.
    Steinritz D; Schmidt A; Balszuweit F; Thiermann H; Simons T; Striepling E; Bölck B; Bloch W
    Toxicol Lett; 2016 Feb; 244():95-102. PubMed ID: 26392148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.