These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 29722810)
1. Genome-Wide Detection of Genes Under Positive Selection in Worldwide Populations of the Barley Scald Pathogen. Mohd-Assaad N; McDonald BA; Croll D Genome Biol Evol; 2018 Apr; 10(5):1315-1332. PubMed ID: 29722810 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide evidence for divergent selection between populations of a major agricultural pathogen. Hartmann FE; McDonald BA; Croll D Mol Ecol; 2018 Jun; 27(12):2725-2741. PubMed ID: 29729657 [TBL] [Abstract][Full Text] [Related]
3. Wild barley (Hordeum spontaneum) and landraces (Hordeum vulgare) from Turkey contain an abundance of novel Rhynchosporium commune resistance loci. Clare SJ; Çelik Oğuz A; Effertz K; Karakaya A; Azamparsa MR; Brueggeman RS Theor Appl Genet; 2023 Jan; 136(1):15. PubMed ID: 36662256 [TBL] [Abstract][Full Text] [Related]
4. Weeds, as ancillary hosts, pose disproportionate risk for virulent pathogen transfer to crops. Linde CC; Smith LM; Peakall R BMC Evol Biol; 2016 May; 16():101. PubMed ID: 27176034 [TBL] [Abstract][Full Text] [Related]
5. Assessment and modeling using machine learning of resistance to scald (Rhynchosporium commune) in two specific barley genetic resources subsets. Hiddar H; Rehman S; Lakew B; Verma RPS; Al-Jaboobi M; Moulakat A; Kehel Z; Filali-Maltouf A; Baum M; Amri A Sci Rep; 2021 Aug; 11(1):15967. PubMed ID: 34354105 [TBL] [Abstract][Full Text] [Related]
6. Host specialisation and disparate evolution of Pyrenophora teres f. teres on barley and barley grass. Linde CC; Smith LM BMC Evol Biol; 2019 Jul; 19(1):139. PubMed ID: 31286867 [TBL] [Abstract][Full Text] [Related]
7. Pyramiding of scald resistance genes in four spring barley MAGIC populations. Hautsalo J; Novakazi F; Jalli M; Göransson M; Manninen O; Isolahti M; Reitan L; Bergersen S; Krusell L; Damsgård Robertsen C; Orabi J; Due Jensen J; Jahoor A; Bengtsson T; Theor Appl Genet; 2021 Dec; 134(12):3829-3843. PubMed ID: 34350474 [TBL] [Abstract][Full Text] [Related]
8. Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations. Mohd-Assaad N; McDonald BA; Croll D Mol Ecol; 2016 Dec; 25(24):6124-6142. PubMed ID: 27859799 [TBL] [Abstract][Full Text] [Related]
9. The Evolution of Orphan Regions in Genomes of a Fungal Pathogen of Wheat. Plissonneau C; Stürchler A; Croll D mBio; 2016 Oct; 7(5):. PubMed ID: 27795389 [TBL] [Abstract][Full Text] [Related]
10. Genetic diversity of Rhynchosporium secalis in Tunisia as revealed by pathotype, AFLP, and microsatellite analyses. Bouajila A; Abang MM; Haouas S; Udupa S; Rezgui S; Baum M; Yahyaoui A Mycopathologia; 2007 May; 163(5):281-94. PubMed ID: 17429759 [TBL] [Abstract][Full Text] [Related]
11. Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. Richards JK; Stukenbrock EH; Carpenter J; Liu Z; Cowger C; Faris JD; Friesen TL PLoS Genet; 2019 Oct; 15(10):e1008223. PubMed ID: 31626626 [TBL] [Abstract][Full Text] [Related]
12. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Lu X; Kracher B; Saur IM; Bauer S; Ellwood SR; Wise R; Yaeno T; Maekawa T; Schulze-Lefert P Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6486-E6495. PubMed ID: 27702901 [TBL] [Abstract][Full Text] [Related]
13. Recent insights into barley and Rhynchosporium commune interactions. Zhang X; Ovenden B; Milgate A Mol Plant Pathol; 2020 Aug; 21(8):1111-1128. PubMed ID: 32537933 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of barley resistance to rhynchosporium on chromosome 6HS. Coulter M; Büttner B; Hofmann K; Bayer M; Ramsay L; Schweizer G; Waugh R; Looseley ME; Avrova A Theor Appl Genet; 2019 Apr; 132(4):1089-1107. PubMed ID: 30547184 [TBL] [Abstract][Full Text] [Related]
15. Characterisation of barley landraces from Syria and Jordan for resistance to rhynchosporium and identification of diagnostic markers for Rrs1 Looseley ME; Griffe LL; Büttner B; Wright KM; Bayer MM; Coulter M; Thauvin JN; Middlefell-Williams J; Maluk M; Okpo A; Kettles N; Werner P; Byrne E; Avrova A Theor Appl Genet; 2020 Apr; 133(4):1243-1264. PubMed ID: 31965232 [TBL] [Abstract][Full Text] [Related]
16. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Croll D; McDonald BA Mol Ecol; 2017 Apr; 26(7):2027-2040. PubMed ID: 27696587 [TBL] [Abstract][Full Text] [Related]
17. Resistance to Rhynchosporium commune in a collection of European spring barley germplasm. Looseley ME; Griffe LL; Büttner B; Wright KM; Middlefell-Williams J; Bull H; Shaw PD; Macaulay M; Booth A; Schweizer G; Russell JR; Waugh R; Thomas WTB; Avrova A Theor Appl Genet; 2018 Dec; 131(12):2513-2528. PubMed ID: 30151748 [TBL] [Abstract][Full Text] [Related]
18. Fine mapping QSc.VR4, an effective and stable scald resistance locus in barley (Hordeum vulgare L.), to a 0.38-Mb region enriched with LRR-RLK and GLP genes. Wang Y; Xu Y; Gupta S; Zhou Y; Wallwork H; Zhou G; Broughton S; Zhang XQ; Tan C; Westcott S; Moody D; Sun D; Loughman R; Zhang W; Li C Theor Appl Genet; 2020 Jul; 133(7):2307-2321. PubMed ID: 32405768 [TBL] [Abstract][Full Text] [Related]
19. Identification of QTLs conferring resistance to scald (Rhynchosporium commune) in the barley nested association mapping population HEB-25. Büttner B; Draba V; Pillen K; Schweizer G; Maurer A BMC Genomics; 2020 Nov; 21(1):837. PubMed ID: 33246416 [TBL] [Abstract][Full Text] [Related]
20. Cause and Effectors: Whole-Genome Comparisons Reveal Shared but Rapidly Evolving Effector Sets among Host-Specific Plant-Castrating Fungi. Beckerson WC; Rodríguez de la Vega RC; Hartmann FE; Duhamel M; Giraud T; Perlin MH mBio; 2019 Nov; 10(6):. PubMed ID: 31690676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]