These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 29722865)

  • 1. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the RBP binding sites on lncRNAs using the high-order nucleotide encoding convolutional neural network.
    Zhang SW; Wang Y; Zhang XX; Wang JQ
    Anal Biochem; 2019 Oct; 583():113364. PubMed ID: 31323206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep neural network approach for learning intrinsic protein-RNA binding preferences.
    Ben-Bassat I; Chor B; Orenstein Y
    Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MCNN: Multiple Convolutional Neural Networks for RNA-Protein Binding Sites Prediction.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1180-1187. PubMed ID: 35471886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-protein interaction site prediction through combining local and global features with deep neural networks.
    Zeng M; Zhang F; Wu FX; Li Y; Wang J; Li M
    Bioinformatics; 2020 Feb; 36(4):1114-1120. PubMed ID: 31593229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites.
    Zhang J; Liu B; Wang Z; Lehnert K; Gahegan M
    BMC Bioinformatics; 2022 Jun; 23(1):257. PubMed ID: 35768792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks.
    Budach S; Marsico A
    Bioinformatics; 2018 Sep; 34(17):3035-3037. PubMed ID: 29659719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convolutional neural networks for classification of alignments of non-coding RNA sequences.
    Aoki G; Sakakibara Y
    Bioinformatics; 2018 Jul; 34(13):i237-i244. PubMed ID: 29949978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting RBP Binding Sites of RNA With High-Order Encoding Features and CNN-BLSTM Hybrid Model.
    Wang Z; Dai Q; Song J; Duan X; Yang H; Yang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2409-2419. PubMed ID: 34038367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRMSNet: A deep learning model that uses convolution and residual multi-head self-attention block to predict RBPs for RNA sequence.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    Proteins; 2023 Aug; 91(8):1032-1041. PubMed ID: 36935548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
    Tsubaki M; Tomii K; Sese J
    Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural networks with circular filters enable data efficient inference of sequence motifs.
    Blum CF; Kollmann M
    Bioinformatics; 2019 Oct; 35(20):3937-3943. PubMed ID: 30918943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. econvRBP: Improved ensemble convolutional neural networks for RNA binding protein prediction directly from sequence.
    Zhao Y; Du X
    Methods; 2020 Oct; 181-182():15-23. PubMed ID: 31513916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding protein binding landscape on circular RNAs with base-resolution transformer models.
    Wu H; Liu X; Fang Y; Yang Y; Huang Y; Pan X; Shen HB
    Comput Biol Med; 2024 Mar; 171():108175. PubMed ID: 38402841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolutional neural network architectures for predicting DNA-protein binding.
    Zeng H; Edwards MD; Liu G; Gifford DK
    Bioinformatics; 2016 Jun; 32(12):i121-i127. PubMed ID: 27307608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning.
    Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S
    Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks.
    Zhang K; Pan X; Yang Y; Shen HB
    RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.