These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 29722865)

  • 21. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A deep learning framework for modeling structural features of RNA-binding protein targets.
    Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J
    Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA-binding protein recognition based on multi-view deep feature and multi-label learning.
    Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EDCNN: identification of genome-wide RNA-binding proteins using evolutionary deep convolutional neural network.
    Wang Y; Yang Y; Ma Z; Wong KC; Li X
    Bioinformatics; 2022 Jan; 38(3):678-686. PubMed ID: 34694393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. iDRBP_MMC: Identifying DNA-Binding Proteins and RNA-Binding Proteins Based on Multi-Label Learning Model and Motif-Based Convolutional Neural Network.
    Zhang J; Chen Q; Liu B
    J Mol Biol; 2020 Nov; 432(22):5860-5875. PubMed ID: 32920048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNAProt: an efficient and feature-rich RNA binding protein binding site predictor.
    Uhl M; Tran VD; Heyl F; Backofen R
    Gigascience; 2021 Aug; 10(8):. PubMed ID: 34406415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text.
    Zhu Q; Li X; Conesa A; Pereira C
    Bioinformatics; 2018 May; 34(9):1547-1554. PubMed ID: 29272325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins.
    Stražar M; Žitnik M; Zupan B; Ule J; Curk T
    Bioinformatics; 2016 May; 32(10):1527-35. PubMed ID: 26787667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach.
    Niu M; Zou Q; Lin C
    PLoS Comput Biol; 2022 Jan; 18(1):e1009798. PubMed ID: 35051187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SpliceRover: interpretable convolutional neural networks for improved splice site prediction.
    Zuallaert J; Godin F; Kim M; Soete A; Saeys Y; De Neve W
    Bioinformatics; 2018 Dec; 34(24):4180-4188. PubMed ID: 29931149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DeepA-RBPBS: A hybrid convolution and recurrent neural network combined with attention mechanism for predicting RBP binding site.
    Du Z; Xiao X; Uversky VN
    J Biomol Struct Dyn; 2022 Jun; 40(9):4250-4258. PubMed ID: 33272122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LPI-CNNCP: Prediction of lncRNA-protein interactions by using convolutional neural network with the copy-padding trick.
    Zhang SW; Zhang XX; Fan XN; Li WN
    Anal Biochem; 2020 Jul; 601():113767. PubMed ID: 32454029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RLBind: a deep learning method to predict RNA-ligand binding sites.
    Wang K; Zhou R; Wu Y; Li M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36398911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biological sequence modeling with convolutional kernel networks.
    Chen D; Jacob L; Mairal J
    Bioinformatics; 2019 Sep; 35(18):3294-3302. PubMed ID: 30753280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RBPPred: predicting RNA-binding proteins from sequence using SVM.
    Zhang X; Liu S
    Bioinformatics; 2017 Mar; 33(6):854-862. PubMed ID: 27993780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions.
    Yan Z; Hamilton WL; Blanchette M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i276-i284. PubMed ID: 32657407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.