These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29722883)

  • 1. Assessing Deep and Shallow Learning Methods for Quantitative Prediction of Acute Chemical Toxicity.
    Liu R; Madore M; Glover KP; Feasel MG; Wallqvist A
    Toxicol Sci; 2018 Aug; 164(2):512-526. PubMed ID: 29722883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting Machine-Learning Prediction of Molecular Activity: Is an Applicability Domain Needed for Quantitative Structure-Activity Relationship Models Based on Deep Neural Networks?
    Liu R; Wang H; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2019 Jan; 59(1):117-126. PubMed ID: 30412667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning for predicting toxicity of chemicals: a mini review.
    Tang W; Chen J; Wang Z; Xie H; Hong H
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):252-271. PubMed ID: 30821199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General Approach to Estimate Error Bars for Quantitative Structure-Activity Relationship Predictions of Molecular Activity.
    Liu R; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2018 Aug; 58(8):1561-1575. PubMed ID: 29949366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors.
    Ambe K; Ishihara K; Ochibe T; Ohya K; Tamura S; Inoue K; Yoshida M; Tohkin M
    Toxicol Sci; 2018 Apr; 162(2):667-675. PubMed ID: 29309657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Toxicity Prediction Using Topology Based Multitask Deep Neural Networks.
    Wu K; Wei GW
    J Chem Inf Model; 2018 Feb; 58(2):520-531. PubMed ID: 29314829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships.
    Xu Y; Ma J; Liaw A; Sheridan RP; Svetnik V
    J Chem Inf Model; 2017 Oct; 57(10):2490-2504. PubMed ID: 28872869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Compound Profiling Matrices, Part II: Relative Performance of Multitask Deep Learning and Random Forest Classification on the Basis of Varying Amounts of Training Data.
    Rodríguez-Pérez R; Bajorath J
    ACS Omega; 2018 Sep; 3(9):12033-12040. PubMed ID: 30320286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Methods in Computational Toxicology.
    Baskin II
    Methods Mol Biol; 2018; 1800():119-139. PubMed ID: 29934890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep neural network-based approach for prediction of mutagenicity of compounds.
    Kumar R; Khan FU; Sharma A; Siddiqui MH; Aziz IB; Kamal MA; Ashraf GM; Alghamdi BS; Uddin MS
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):47641-47650. PubMed ID: 33895950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data.
    Koutsoukas A; Monaghan KJ; Li X; Huan J
    J Cheminform; 2017 Jun; 9(1):42. PubMed ID: 29086090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning-Based Structure-Activity Relationship Modeling for Multi-Category Toxicity Classification: A Case Study of 10K Tox21 Chemicals With High-Throughput Cell-Based Androgen Receptor Bioassay Data.
    Idakwo G; Thangapandian S; Luttrell J; Zhou Z; Zhang C; Gong P
    Front Physiol; 2019; 10():1044. PubMed ID: 31456700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consensus models to predict oral rat acute toxicity and validation on a dataset coming from the industrial context.
    Lunghini F; Marcou G; Azam P; Horvath D; Patoux R; Van Miert E; Varnek A
    SAR QSAR Environ Res; 2019 Dec; 30(12):879-897. PubMed ID: 31607169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forecasting actual evapotranspiration without climate data based on stacked integration of DNN and meta-heuristic models across China from 1958 to 2021.
    Elbeltagi A; Srivastava A; Li P; Jiang J; Jinsong D; Rajput J; Khadke L; Awad A
    J Environ Manage; 2023 Nov; 345():118697. PubMed ID: 37688967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity.
    Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T
    Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches.
    Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T
    Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure.
    Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I
    Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Splice-Site Prediction with Deep Neural Networks.
    Naito T
    J Comput Biol; 2018 Aug; 25(8):954-961. PubMed ID: 29668310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.
    Korotcov A; Tkachenko V; Russo DP; Ekins S
    Mol Pharm; 2017 Dec; 14(12):4462-4475. PubMed ID: 29096442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.