These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 29722980)

  • 1. Multilevel Molecular Modeling Approach for a Rational Design of Ionic Current Sensors for Nanofluidics.
    Kirch A; de Almeida JM; Miranda CR
    J Chem Theory Comput; 2018 Jun; 14(6):3113-3120. PubMed ID: 29722980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofluidic Transport through Isolated Carbon Nanotube Channels: Advances, Controversies, and Challenges.
    Guo S; Meshot ER; Kuykendall T; Cabrini S; Fornasiero F
    Adv Mater; 2015 Oct; 27(38):5726-37. PubMed ID: 26037895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q; Huang L; Zhou J; Lu L; Zhang L; Lu X; Jiang S; Gubbins KE; Shen W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1896-906. PubMed ID: 18368182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How ions block the single-file water transport through a carbon nanotube.
    Su Z; Chen J; Zhao Y; Su J
    Phys Chem Chem Phys; 2019 Jun; 21(21):11298-11305. PubMed ID: 31106311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic Coulomb blockade as a fractional Wien effect.
    Kavokine N; Marbach S; Siria A; Bocquet L
    Nat Nanotechnol; 2019 Jun; 14(6):573-578. PubMed ID: 30962547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.
    Haskins JB; Bauschlicher CW; Lawson JW
    J Phys Chem B; 2015 Nov; 119(46):14705-19. PubMed ID: 26505208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Charge Transfer in Water Diffusivity in Aqueous Ionic Solutions.
    Yao Y; Kanai Y; Berkowitz ML
    J Phys Chem Lett; 2014 Aug; 5(15):2711-6. PubMed ID: 26277968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of salt rejection through silicon carbide nanotubes as a nanostructure membrane.
    Khataee A; Bayat G; Azamat J
    J Mol Graph Model; 2017 Jan; 71():176-183. PubMed ID: 27939929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel.
    Zuo G; Shen R; Ma S; Guo W
    ACS Nano; 2010 Jan; 4(1):205-10. PubMed ID: 20000381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes.
    Vuković L; Vokac E; Král P
    J Phys Chem Lett; 2014 Jun; 5(12):2131-7. PubMed ID: 26270504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular interactions and thermal transport in ionic liquids with carbon nanomaterials.
    França JMP; Nieto de Castro CA; Pádua AAH
    Phys Chem Chem Phys; 2017 Jul; 19(26):17075-17087. PubMed ID: 28621790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoelectricity in Heterogeneous Nanofluidic Channels.
    Li L; Wang Q
    Small; 2018 May; 14(21):e1800369. PubMed ID: 29673112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of Li adsorption on carbon nanotube-fullerene hybrid system: a first-principles study.
    Koh W; Choi JI; Donaher K; Lee SG; Jang SS
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1186-94. PubMed ID: 21443264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of ion transport through carbon nanotubes. III. Influence of the nanotube radius, solute concentration, and applied electric fields on the transport properties.
    Beu TA
    J Chem Phys; 2011 Jul; 135(4):044516. PubMed ID: 21806147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermophoretic transport of ionic liquid droplets in carbon nanotubes.
    Rajegowda R; Kannam SK; Hartkamp R; Sathian SP
    Nanotechnology; 2017 Apr; 28(15):155401. PubMed ID: 28230533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics.
    Höltzel A; Tallarek U
    J Sep Sci; 2007 Jul; 30(10):1398-419. PubMed ID: 17623420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inducing Electric Current in Graphene Using Ionic Flow.
    Chen F; Zhao Y; Saxena A; Zhao C; Niu M; Aluru NR; Feng J
    Nano Lett; 2023 May; 23(10):4464-4470. PubMed ID: 37154839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.