BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 29723037)

  • 1. Celecoxib treatment improves muscle function in mdx mice and increases utrophin A expression.
    Péladeau C; Adam NJ; Jasmin BJ
    FASEB J; 2018 Sep; 32(9):5090-5103. PubMed ID: 29723037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles.
    Péladeau C; Ahmed A; Amirouche A; Crawford Parks TE; Bronicki LM; Ljubicic V; Renaud JM; Jasmin BJ
    Hum Mol Genet; 2016 Jan; 25(1):24-43. PubMed ID: 26494902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.
    Church JE; Trieu J; Chee A; Naim T; Gehrig SM; Lamon S; Angelini C; Russell AP; Lynch GS
    Exp Physiol; 2014 Apr; 99(4):675-87. PubMed ID: 24443351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of p38 signaling increases utrophin A expression in skeletal muscle via the RNA-binding protein KSRP and inhibition of AU-rich element-mediated mRNA decay: implications for novel DMD therapeutics.
    Amirouche A; Tadesse H; Lunde JA; Bélanger G; Côté J; Jasmin BJ
    Hum Mol Genet; 2013 Aug; 22(15):3093-111. PubMed ID: 23575223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of gene expression differences between utrophin/dystrophin-deficient vs mdx skeletal muscles reveals a specific upregulation of slow muscle genes in limb muscles.
    Baker PE; Kearney JA; Gong B; Merriam AP; Kuhn DE; Porter JD; Rafael-Fortney JA
    Neurogenetics; 2006 May; 7(2):81-91. PubMed ID: 16525850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic remodeling of dystrophic skeletal muscle reveals biological roles for dystrophin and utrophin in adaptation and plasticity.
    Hardee JP; Martins KJB; Miotto PM; Ryall JG; Gehrig SM; Reljic B; Naim T; Chung JD; Trieu J; Swiderski K; Philp AM; Philp A; Watt MJ; Stroud DA; Koopman R; Steinberg GR; Lynch GS
    Mol Metab; 2021 Mar; 45():101157. PubMed ID: 33359740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic myosin is a regeneration marker to monitor utrophin-based therapies for DMD.
    Guiraud S; Edwards B; Squire SE; Moir L; Berg A; Babbs A; Ramadan N; Wood MJ; Davies KE
    Hum Mol Genet; 2019 Jan; 28(2):307-319. PubMed ID: 30304405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological activation of PPARbeta/delta stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice.
    Miura P; Chakkalakal JV; Boudreault L; Bélanger G; Hébert RL; Renaud JM; Jasmin BJ
    Hum Mol Genet; 2009 Dec; 18(23):4640-9. PubMed ID: 19744959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle specific kinase protects dystrophic mdx mouse muscles from eccentric contraction-induced loss of force-producing capacity.
    Trajanovska S; Ban J; Huang J; Gregorevic P; Morsch M; Allen DG; Phillips WD
    J Physiol; 2019 Sep; 597(18):4831-4850. PubMed ID: 31340406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice.
    Strimpakos G; Corbi N; Pisani C; Di Certo MG; Onori A; Luvisetto S; Severini C; Gabanella F; Monaco L; Mattei E; Passananti C
    J Cell Physiol; 2014 Sep; 229(9):1283-91. PubMed ID: 24469912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diaphragm rescue alone prevents heart dysfunction in dystrophic mice.
    Crisp A; Yin H; Goyenvalle A; Betts C; Moulton HM; Seow Y; Babbs A; Merritt T; Saleh AF; Gait MJ; Stuckey DJ; Clarke K; Davies KE; Wood MJ
    Hum Mol Genet; 2011 Feb; 20(3):413-21. PubMed ID: 21062902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise increases utrophin protein expression in the mdx mouse model of Duchenne muscular dystrophy.
    Gordon BS; Lowe DA; Kostek MC
    Muscle Nerve; 2014 Jun; 49(6):915-8. PubMed ID: 24375286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of FHL1 as a therapeutic target for Duchenne muscular dystrophy.
    D'Arcy CE; Feeney SJ; McLean CA; Gehrig SM; Lynch GS; Smith JE; Cowling BS; Mitchell CA; McGrath MJ
    Hum Mol Genet; 2014 Feb; 23(3):618-36. PubMed ID: 24087791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BGP-15 Improves Aspects of the Dystrophic Pathology in mdx and dko Mice with Differing Efficacies in Heart and Skeletal Muscle.
    Kennedy TL; Swiderski K; Murphy KT; Gehrig SM; Curl CL; Chandramouli C; Febbraio MA; Delbridge LM; Koopman R; Lynch GS
    Am J Pathol; 2016 Dec; 186(12):3246-3260. PubMed ID: 27750047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utrophin A is essential in mediating the functional adaptations of mdx mouse muscle following chronic AMPK activation.
    Al-Rewashdy H; Ljubicic V; Lin W; Renaud JM; Jasmin BJ
    Hum Mol Genet; 2015 Mar; 24(5):1243-55. PubMed ID: 25324540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction.
    Mishra MK; Loro E; Sengupta K; Wilton SD; Khurana TS
    PLoS One; 2017; 12(10):e0182676. PubMed ID: 29045431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice.
    Chakkalakal JV; Harrison MA; Carbonetto S; Chin E; Michel RN; Jasmin BJ
    Hum Mol Genet; 2004 Feb; 13(4):379-88. PubMed ID: 14681302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ixazomib, an oral proteasome inhibitor, exhibits potential effect in dystrophin-deficient mdx mice.
    Micheletto MLJ; Hermes TA; Bertassoli BM; Petri G; Perez MM; Fonseca FLA; Carvalho AAS; Feder D
    Int J Exp Pathol; 2021 Feb; 102(1):11-21. PubMed ID: 33296126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of dystrophin and utrophin gene transfer in immunocompetent muscular dystrophy (mdx) mice.
    Ebihara S; Guibinga GH; Gilbert R; Nalbantoglu J; Massie B; Karpati G; Petrof BJ
    Physiol Genomics; 2000 Sep; 3(3):133-44. PubMed ID: 11015608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing muscle contractility through low-frequency stimulation alters tibial bone geometry and reduces bone strength in
    Chan AS; Hardee JP; Blank M; Cho EH; McGregor NE; Sims NA; Lynch GS
    J Appl Physiol (1985); 2023 Jul; 135(1):77-87. PubMed ID: 37262103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.