These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 29723046)
1. Metal resistant rhizobia and ultrastructure of Anthyllis vulneraria nodules from zinc and lead contaminated tailing in Poland. Sujkowska-Rybkowska M; Ważny R Int J Phytoremediation; 2018 Jun; 20(7):709-720. PubMed ID: 29723046 [TBL] [Abstract][Full Text] [Related]
2. Ancient Heavy Metal Contamination in Soils as a Driver of Tolerant Anthyllis vulneraria Rhizobial Communities. Mohamad R; Maynaud G; Le Quéré A; Vidal C; Klonowska A; Yashiro E; Cleyet-Marel JC; Brunel B Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27793823 [TBL] [Abstract][Full Text] [Related]
3. Prospecting metal-tolerant rhizobia for phytoremediation of mining soils from Morocco using Anthyllis vulneraria L. El Aafi N; Saidi N; Maltouf AF; Perez-Palacios P; Dary M; Brhada F; Pajuelo E Environ Sci Pollut Res Int; 2015 Mar; 22(6):4500-12. PubMed ID: 25315928 [TBL] [Abstract][Full Text] [Related]
4. Arbuscular Mycorrhizal Fungi as an Important Factor Enabling the Adaptation of Sujkowska-Rybkowska M; Lisek A; Sumorok B; Derkowska E; Szymańska M; Sas-Paszt L Plants (Basel); 2023 May; 12(11):. PubMed ID: 37299072 [TBL] [Abstract][Full Text] [Related]
5. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil. Lu M; Jiao S; Gao E; Song X; Li Z; Hao X; Rensing C; Wei G Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778889 [TBL] [Abstract][Full Text] [Related]
7. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources. Grison CM; Mazel M; Sellini A; Escande V; Biton J; Grison C Environ Sci Pollut Res Int; 2015 Apr; 22(8):5667-76. PubMed ID: 25253057 [TBL] [Abstract][Full Text] [Related]
8. Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Fan M; Liu Z; Nan L; Wang E; Chen W; Lin Y; Wei G Microbiol Res; 2018 Dec; 217():51-59. PubMed ID: 30384908 [TBL] [Abstract][Full Text] [Related]
10. CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a P(IB-2)-type ATPase involved in cadmium and zinc resistance. Maynaud G; Brunel B; Yashiro E; Mergeay M; Cleyet-Marel JC; Le Quéré A Res Microbiol; 2014 Apr; 165(3):175-89. PubMed ID: 24607711 [TBL] [Abstract][Full Text] [Related]
12. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. Chiboub M; Saadani O; Fatnassi IC; Abdelkrim S; Abid G; Jebara M; Jebara SH C R Biol; 2016; 339(9-10):391-8. PubMed ID: 27498183 [TBL] [Abstract][Full Text] [Related]
13. Study on diversity, nitrogen-fixing capacity, and heavy metal tolerance of culturable Shen T; Jin R; Yan J; Cheng X; Zeng L; Chen Q; Gu Y; Zou L; Zhao K; Xiang Q; Penttinen P; Ma M; Li S; Zou T; Yu X Front Microbiol; 2023; 14():1078333. PubMed ID: 37405163 [TBL] [Abstract][Full Text] [Related]
14. Exploring apoplast reorganization in the nodules of Lotus corniculatus L. growing on old Zn-Pb calamine wastes. Sujkowska-Rybkowska M; Rusaczonek A; Kochańska-Jeziorska A J Plant Physiol; 2022 Jan; 268():153561. PubMed ID: 34801776 [TBL] [Abstract][Full Text] [Related]
15. Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Maynaud G; Willems A; Soussou S; Vidal C; Mauré L; Moulin L; Cleyet-Marel JC; Brunel B Syst Appl Microbiol; 2012 Mar; 35(2):65-72. PubMed ID: 22221859 [TBL] [Abstract][Full Text] [Related]
16. [Application of rhizobia-legume symbiosis for remediation of heavy-metal contaminated soils]. Wei G; Ma Z Wei Sheng Wu Xue Bao; 2010 Nov; 50(11):1421-30. PubMed ID: 21268885 [TBL] [Abstract][Full Text] [Related]
17. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Ren CG; Kong CC; Wang SX; Xie ZH Chemosphere; 2019 Feb; 217():773-779. PubMed ID: 30448757 [TBL] [Abstract][Full Text] [Related]
18. Mesorhizobium delmotii and Mesorhizobium prunaredense are two new species containing rhizobial strains within the symbiovar anthyllidis. Mohamad R; Willems A; Le Quéré A; Maynaud G; Pervent M; Bonabaud M; Dubois E; Cleyet-Marel JC; Brunel B Syst Appl Microbiol; 2017 Apr; 40(3):135-143. PubMed ID: 28238475 [TBL] [Abstract][Full Text] [Related]
19. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Wójcik M; Sugier P; Siebielec G Sci Total Environ; 2014 Jul; 487():313-22. PubMed ID: 24793328 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Hao X; Taghavi S; Xie P; Orbach MJ; Alwathnani HA; Rensing C; Wei G Int J Phytoremediation; 2014; 16(2):179-202. PubMed ID: 24912209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]