These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 29723165)
1. Interleukin-22 (IL-22) Regulates Apoptosis of Paclitaxel-Resistant Non-Small Cell Lung Cancer Cells Through C-Jun N-Terminal Kinase Signaling Pathway. Li C; Zhao X; Yang Y; Liu S; Liu Y; Li X Med Sci Monit; 2018 May; 24():2750-2757. PubMed ID: 29723165 [TBL] [Abstract][Full Text] [Related]
2. Interleukin-22 enhances chemoresistance of lung adenocarcinoma cells to paclitaxel. Huang Z; Gao Y; Hou D Hum Cell; 2020 Jul; 33(3):850-858. PubMed ID: 32452013 [TBL] [Abstract][Full Text] [Related]
3. Synergistic Anticancer Activity of Combined Use of Caffeic Acid with Paclitaxel Enhances Apoptosis of Non-Small-Cell Lung Cancer H1299 Cells in Vivo and in Vitro. Min J; Shen H; Xi W; Wang Q; Yin L; Zhang Y; Yu Y; Yang Q; Wang ZN Cell Physiol Biochem; 2018; 48(4):1433-1442. PubMed ID: 30064123 [TBL] [Abstract][Full Text] [Related]
4. MiR-221-3p-mediated downregulation of MDM2 reverses the paclitaxel resistance of non-small cell lung cancer in vitro and in vivo. Ni L; Xu J; Zhao F; Dai X; Tao J; Pan J; Shi A; Shen Z; Su C; Zhang Y Eur J Pharmacol; 2021 May; 899():174054. PubMed ID: 33771522 [TBL] [Abstract][Full Text] [Related]
5. Involvement of miR-4262 in paclitaxel resistance through the regulation of PTEN in non-small cell lung cancer. Sun H; Zhou X; Bao Y; Xiong G; Cui Y; Zhou H Open Biol; 2019 Jul; 9(7):180227. PubMed ID: 31337279 [TBL] [Abstract][Full Text] [Related]
6. p38 MAPK-induced MDM2 degradation confers paclitaxel resistance through p53-mediated regulation of EGFR in human lung cancer cells. Park SH; Seong MA; Lee HY Oncotarget; 2016 Feb; 7(7):8184-99. PubMed ID: 26799187 [TBL] [Abstract][Full Text] [Related]
7. Suppression of reactive oxygen species-mediated ERK and JNK activation sensitizes dihydromyricetin-induced mitochondrial apoptosis in human non-small cell lung cancer. Kao SJ; Lee WJ; Chang JH; Chow JM; Chung CL; Hung WY; Chien MH Environ Toxicol; 2017 Apr; 32(4):1426-1438. PubMed ID: 27539140 [TBL] [Abstract][Full Text] [Related]
8. ROCK1 knockdown inhibits non-small-cell lung cancer progression by activating the LATS2-JNK signaling pathway. Xin T; Lv W; Liu D; Jing Y; Hu F Aging (Albany NY); 2020 Jun; 12(12):12160-12174. PubMed ID: 32554853 [TBL] [Abstract][Full Text] [Related]
9. Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo. Chen S; Zhang Z; Zhang J Drug Des Devel Ther; 2019; 13():1145-1153. PubMed ID: 31114158 [No Abstract] [Full Text] [Related]
10. Erlotinib induces the human non-small-cell lung cancer cells apoptosis via activating ROS-dependent JNK pathways. Shan F; Shao Z; Jiang S; Cheng Z Cancer Med; 2016 Nov; 5(11):3166-3175. PubMed ID: 27726288 [TBL] [Abstract][Full Text] [Related]
11. Cisplatin induces expression of drug resistance-related genes through c-jun N-terminal kinase pathway in human lung cancer cells. Xu L; Fu Y; Li Y; Han X Cancer Chemother Pharmacol; 2017 Aug; 80(2):235-242. PubMed ID: 28597042 [TBL] [Abstract][Full Text] [Related]
12. Apatinib Reverses Paclitaxel-resistant Lung Cancer Cells (A549) Through Blocking the Function of ABCB1 Transporter. Zhang Q; Song Y; Cheng X; Xu Z; Matthew OA; Wang J; Sun Z; Zhang X Anticancer Res; 2019 Oct; 39(10):5461-5471. PubMed ID: 31570440 [TBL] [Abstract][Full Text] [Related]
13. Sulforaphane metabolites reduce resistance to paclitaxel via microtubule disruption. Wang Y; Zhou Y; Zheng Z; Li J; Yan Y; Wu W Cell Death Dis; 2018 Nov; 9(11):1134. PubMed ID: 30429459 [TBL] [Abstract][Full Text] [Related]
14. Additive effects of C(2)-ceramide on paclitaxel-induced premature senescence of human lung cancer cells. Chen JY; Hwang CC; Chen WY; Lee JC; Fu TF; Fang K; Chu YC; Huang YL; Lin JC; Tsai WH; Chang HW; Chen BH; Chiu CC Life Sci; 2010 Sep; 87(11-12):350-7. PubMed ID: 20624405 [TBL] [Abstract][Full Text] [Related]
15. Glycyrrhetinic acid induces cytoprotective autophagy via the inositol-requiring enzyme 1α-c-Jun N-terminal kinase cascade in non-small cell lung cancer cells. Tang ZH; Zhang LL; Li T; Lu JH; Ma DL; Leung CH; Chen XP; Jiang HL; Wang YT; Lu JJ Oncotarget; 2015 Dec; 6(41):43911-26. PubMed ID: 26549806 [TBL] [Abstract][Full Text] [Related]
16. c-Jun N-terminal Kinase-Dependent Endoplasmic Reticulum Stress Pathway is Critically Involved in Arjunic Acid Induced Apoptosis in Non-Small Cell Lung Cancer Cells. Joo H; Lee HJ; Shin EA; Kim H; Seo KH; Baek NI; Kim B; Kim SH Phytother Res; 2016 Apr; 30(4):596-603. PubMed ID: 26787261 [TBL] [Abstract][Full Text] [Related]
17. Phanginin R Induces Cytoprotective Autophagy via JNK/c-Jun Signaling Pathway in Non-Small Cell Lung Cancer A549 Cells. Zhang LL; Bao H; Xu YL; Jiang XM; Li W; Zou L; Lin LG; Lu JJ Anticancer Agents Med Chem; 2020; 20(8):982-988. PubMed ID: 32286950 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Anti-Metastatic Potential of the Combination of Fisetin with Paclitaxel on A549 Non-Small Cell Lung Cancer Cells. Klimaszewska-Wiśniewska A; Hałas-Wiśniewska M; Grzanka A; Grzanka D Int J Mol Sci; 2018 Feb; 19(3):. PubMed ID: 29495431 [TBL] [Abstract][Full Text] [Related]
19. IRE1α-TRAF2-ASK1 pathway is involved in CSTMP-induced apoptosis and ER stress in human non-small cell lung cancer A549 cells. Zhang J; Liang Y; Lin Y; Liu Y; YouYou ; Yin W Biomed Pharmacother; 2016 Aug; 82():281-9. PubMed ID: 27470364 [TBL] [Abstract][Full Text] [Related]
20. EHD1 confers resistance to cisplatin in non-small cell lung cancer by regulating intracellular cisplatin concentrations. Gao J; Meng Q; Zhao Y; Chen X; Cai L BMC Cancer; 2016 Jul; 16():470. PubMed ID: 27411790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]