These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 29723275)

  • 1. Droplet-based microfluidic analysis and screening of single plant cells.
    Yu Z; Boehm CR; Hibberd JM; Abell C; Haseloff J; Burgess SJ; Reyna-Llorens I
    PLoS One; 2018; 13(5):e0196810. PubMed ID: 29723275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput single cell counting in droplet-based microfluidics.
    Lu H; Caen O; Vrignon J; Zonta E; El Harrak Z; Nizard P; Baret JC; Taly V
    Sci Rep; 2017 May; 7(1):1366. PubMed ID: 28465615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Volume Microfluidic Cell Sorting for Biomedical Applications.
    Warkiani ME; Wu L; Tay AK; Han J
    Annu Rev Biomed Eng; 2015; 17():1-34. PubMed ID: 26194427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CellMag-CARWash: A High Throughput Droplet Microfluidic Device for Live Cell Isolation and Single Cell Applications.
    Rupp BT; Cook CD; Purcell EA; Pop M; Radomski AE; Mesyngier N; Bailey RC; Nagrath S
    Adv Biol (Weinh); 2024 Jul; 8(7):e2400066. PubMed ID: 38741244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.
    Wen N; Zhao Z; Fan B; Chen D; Men D; Wang J; Chen J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27399651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.
    Schoeman RM; Kemna EW; Wolbers F; van den Berg A
    Electrophoresis; 2014 Feb; 35(2-3):385-92. PubMed ID: 23856757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic device for the high-throughput and selective encapsulation of single target cells.
    Nakamura M; Matsumoto M; Ito T; Hidaka I; Tatsuta H; Katsumoto Y
    Lab Chip; 2024 May; 24(11):2958-2967. PubMed ID: 38722067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell activity screening in microfluidic droplets.
    Neun S; Kaminski TS; Hollfelder F
    Methods Enzymol; 2019; 628():95-112. PubMed ID: 31668237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell nucleic acid profiling in droplets (SNAPD) enables high-throughput analysis of heterogeneous cell populations.
    Hyman LB; Christopher CR; Romero PA
    Nucleic Acids Res; 2021 Oct; 49(18):e103. PubMed ID: 34233007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
    Kim HS; Devarenne TP; Han A
    Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Gateway Binary Vector Series with Four Different Selection Markers for the Liverwort Marchantia polymorpha.
    Ishizaki K; Nishihama R; Ueda M; Inoue K; Ishida S; Nishimura Y; Shikanai T; Kohchi T
    PLoS One; 2015; 10(9):e0138876. PubMed ID: 26406247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli.
    Kubota A; Ishizaki K; Hosaka M; Kohchi T
    Biosci Biotechnol Biochem; 2013; 77(1):167-72. PubMed ID: 23291762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robotic Platform for High-throughput Protoplast Isolation and Transformation.
    Dlugosz EM; Lenaghan SC; Stewart CN
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27768035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotyping of single plant cells on a microfluidic cytometry platform with fluorescent, mechanical, and electrical modules.
    Zhang S; Zhang T; Wang S; Han Z; Duan X; Wang J
    Analyst; 2024 Aug; 149(17):4436-4442. PubMed ID: 39015957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AgarTrap: a simplified Agrobacterium-mediated transformation method for sporelings of the liverwort Marchantia polymorpha L.
    Tsuboyama S; Kodama Y
    Plant Cell Physiol; 2014 Jan; 55(1):229-36. PubMed ID: 24259681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Biochips for Single-Cell Isolation and Single-Cell Analysis of Multiomics and Exosomes.
    Wang C; Qiu J; Liu M; Wang Y; Yu Y; Liu H; Zhang Y; Han L
    Adv Sci (Weinh); 2024 Jul; 11(28):e2401263. PubMed ID: 38767182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet microfluidics for single-cell analysis.
    Brouzes E
    Methods Mol Biol; 2012; 853():105-39. PubMed ID: 22323144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossed flow microfluidics for high throughput screening of bioactive chemical-cell interactions.
    Tong Z; Ivask A; Guo K; McCormick S; Lombi E; Priest C; Voelcker NH
    Lab Chip; 2017 Jan; 17(3):501-510. PubMed ID: 28074962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesh-integrated microdroplet array for simultaneous merging and storage of single-cell droplets.
    Um E; Rha E; Choi SL; Lee SG; Park JK
    Lab Chip; 2012 May; 12(9):1594-7. PubMed ID: 22422143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.