These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29723599)

  • 1. Adaptive control and the avoidance of cognitive control demands across development.
    Niebaum JC; Chevalier N; Guild RM; Munakata Y
    Neuropsychologia; 2019 Feb; 123():152-158. PubMed ID: 29723599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Mechanisms for Adaptive Learned Avoidance of Mental Effort.
    Nagase AM; Onoda K; Foo JC; Haji T; Akaishi R; Yamaguchi S; Sakai K; Morita K
    J Neurosci; 2018 Mar; 38(10):2631-2651. PubMed ID: 29431647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural systems of cognitive demand avoidance.
    Sayalı C; Badre D
    Neuropsychologia; 2019 Feb; 123():41-54. PubMed ID: 29944865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing adaptive control: Age-related differences in task choices and awareness of proactive and reactive control demands.
    Niebaum JC; Chevalier N; Guild RM; Munakata Y
    Cogn Affect Behav Neurosci; 2021 Jun; 21(3):561-572. PubMed ID: 33009653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance.
    Kable JW; Caulfield MK; Falcone M; McConnell M; Bernardo L; Parthasarathi T; Cooper N; Ashare R; Audrain-McGovern J; Hornik R; Diefenbach P; Lee FJ; Lerman C
    J Neurosci; 2017 Aug; 37(31):7390-7402. PubMed ID: 28694338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognitive control in action: Tracking the dynamics of rule switching in 5- to 8-year-olds and adults.
    Erb CD; Moher J; Song JH; Sobel DM
    Cognition; 2017 Jul; 164():163-173. PubMed ID: 28431279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avoiding the conflict: Metacognitive awareness drives the selection of low-demand contexts.
    Desender K; Buc Calderon C; Van Opstal F; Van den Bussche E
    J Exp Psychol Hum Percept Perform; 2017 Jul; 43(7):1397-1410. PubMed ID: 28368164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dorsal striatum mediates cognitive control, not cognitive effort per se, in decision-making: An event-related fMRI study.
    Robertson BD; Hiebert NM; Seergobin KN; Owen AM; MacDonald PA
    Neuroimage; 2015 Jul; 114():170-84. PubMed ID: 25862263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relation between brain signal complexity and task difficulty on an executive function task.
    Grundy JG; Barker RM; Anderson JAE; Shedden JM
    Neuroimage; 2019 Sep; 198():104-113. PubMed ID: 31112787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prefrontal Engagement and Reduced Default Network Suppression Co-occur and Are Dynamically Coupled in Older Adults: The Default-Executive Coupling Hypothesis of Aging.
    Turner GR; Spreng RN
    J Cogn Neurosci; 2015 Dec; 27(12):2462-76. PubMed ID: 26351864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causal Evidence for Learning-Dependent Frontal Lobe Contributions to Cognitive Control.
    Muhle-Karbe PS; Jiang J; Egner T
    J Neurosci; 2018 Jan; 38(4):962-973. PubMed ID: 29229706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced affective states do not modulate effort avoidance.
    González-García C; García-Carrión B; López-Benítez R; Sobrado A; Acosta A; Ruz M
    Psychol Res; 2021 Apr; 85(3):1016-1028. PubMed ID: 32036442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Executive function depletion in children and its impact on theory of mind.
    Powell LJ; Carey S
    Cognition; 2017 Jul; 164():150-162. PubMed ID: 28427031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contextually sensitive power changes across multiple frequency bands underpin cognitive control.
    Cooper PS; Darriba Á; Karayanidis F; Barceló F
    Neuroimage; 2016 May; 132():499-511. PubMed ID: 26975557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Inhibition and resource capacity during normal aging: a confrontation of the dorsal-ventral and frontal models in a modified version of negative priming].
    Martin S; Brouillet D; Guerdoux E; Tarrago R
    Encephale; 2006; 32(2 Pt 1):253-62. PubMed ID: 16910627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Neural Dynamics of Proactive Cognitive Control in a Task-Switching Analogue of the Wisconsin Card Sorting Test.
    Gema Díaz-Blancat ; Juan García-Prieto ; Fernando Maestú ; Francisco Barceló
    Brain Topogr; 2018 May; 31(3):407-418. PubMed ID: 29124546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.
    Harding IH; Yücel M; Harrison BJ; Pantelis C; Breakspear M
    Neuroimage; 2015 Feb; 106():144-53. PubMed ID: 25463464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cognitive task avoidance correlates with fatigue-induced performance decrement but not with subjective fatigue.
    Benoit CE; Solopchuk O; Borragán G; Carbonnelle A; Van Durme S; Zénon A
    Neuropsychologia; 2019 Feb; 123():30-40. PubMed ID: 29936122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental changes and the effect of self-generated feedback in metacognitive controlled spacing strategies in 7-year-olds, 10-year-olds, and adults.
    Tsalas N; Paulus M; Sodian B
    J Exp Child Psychol; 2015 Apr; 132():140-54. PubMed ID: 25703006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tipping point: Value differences and parallel dorsal-ventral frontal circuits gating human approach-avoidance behavior.
    Schlund MW; Brewer AT; Magee SK; Richman DM; Solomon S; Ludlum M; Dymond S
    Neuroimage; 2016 Aug; 136():94-105. PubMed ID: 27153979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.