These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29723665)

  • 1. The proinflammatory effects of macrophage-derived NADPH oxidase function in autoimmune diabetes.
    Feduska JM; Tse HM
    Free Radic Biol Med; 2018 Sep; 125():81-89. PubMed ID: 29723665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-Sensitive Innate Immune Pathways During Macrophage Activation in Type 1 Diabetes.
    Burg AR; Tse HM
    Antioxid Redox Signal; 2018 Nov; 29(14):1373-1398. PubMed ID: 29037052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis.
    Padgett LE; Broniowska KA; Hansen PA; Corbett JA; Tse HM
    Ann N Y Acad Sci; 2013 Apr; 1281(1):16-35. PubMed ID: 23323860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of NADPH oxidase-derived superoxide skews macrophage phenotypes to delay type 1 diabetes.
    Padgett LE; Burg AR; Lei W; Tse HM
    Diabetes; 2015 Mar; 64(3):937-46. PubMed ID: 25288672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide Production by NADPH Oxidase Intensifies Macrophage Antiviral Responses during Diabetogenic Coxsackievirus Infection.
    Burg AR; Das S; Padgett LE; Koenig ZE; Tse HM
    J Immunol; 2018 Jan; 200(1):61-70. PubMed ID: 29158420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of NOX-Derived Superoxide Exacerbates Diabetogenic CD4 T-Cell Effector Responses in Type 1 Diabetes.
    Padgett LE; Anderson B; Liu C; Ganini D; Mason RP; Piganelli JD; Mathews CE; Tse HM
    Diabetes; 2015 Dec; 64(12):4171-83. PubMed ID: 26269022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADPH Oxidase-Derived Superoxide Provides a Third Signal for CD4 T Cell Effector Responses.
    Padgett LE; Tse HM
    J Immunol; 2016 Sep; 197(5):1733-42. PubMed ID: 27474077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of NOX4 and NOX1 on immune cell-mediated inflammation in the aortic sinus of diabetic ApoE-/- mice.
    Di Marco E; Gray SP; Chew P; Kennedy K; Cooper ME; Schmidt HH; Jandeleit-Dahm KA
    Clin Sci (Lond); 2016 Aug; 130(15):1363-74. PubMed ID: 27190136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress and redox modulation potential in type 1 diabetes.
    Delmastro MM; Piganelli JD
    Clin Dev Immunol; 2011; 2011():593863. PubMed ID: 21647409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of NADPH oxidase-mediated redox signaling in the detrimental effect of CRP on pancreatic insulin secretion.
    Chan PC; Wang YC; Chen YL; Hsu WN; Tian YF; Hsieh PS
    Free Radic Biol Med; 2017 Nov; 112():200-211. PubMed ID: 28778482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive Oxygen Species and Their Implications on CD4
    Previte DM; Piganelli JD
    Antioxid Redox Signal; 2018 Nov; 29(14):1399-1414. PubMed ID: 28990401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide production by macrophages and T cells is critical for the induction of autoreactivity and type 1 diabetes.
    Thayer TC; Delano M; Liu C; Chen J; Padgett LE; Tse HM; Annamali M; Piganelli JD; Moldawer LL; Mathews CE
    Diabetes; 2011 Aug; 60(8):2144-51. PubMed ID: 21715554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen intermediates in autoimmune islet cell destruction of the NOD mouse induced by peritoneal exudate cells (rich in macrophages) but not T cells.
    Horio F; Fukuda M; Katoh H; Petruzzelli M; Yano N; Rittershaus C; Bonner-Weir S; Hattori M
    Diabetologia; 1994 Jan; 37(1):22-31. PubMed ID: 8150225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus.
    Rabinovitch A; Suarez-Pinzon WL
    Biochem Pharmacol; 1998 Apr; 55(8):1139-49. PubMed ID: 9719467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dual role of Reactive Oxygen Species in autoimmune and inflammatory diseases: evidence from preclinical models.
    Hoffmann MH; Griffiths HR
    Free Radic Biol Med; 2018 Sep; 125():62-71. PubMed ID: 29550327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-signals and macrophage biology.
    Weigert A; von Knethen A; Fuhrmann D; Dehne N; Brüne B
    Mol Aspects Med; 2018 Oct; 63():70-87. PubMed ID: 29329794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partners in Crime: Beta-Cells and Autoimmune Responses Complicit in Type 1 Diabetes Pathogenesis.
    Toren E; Burnette KS; Banerjee RR; Hunter CS; Tse HM
    Front Immunol; 2021; 12():756548. PubMed ID: 34691077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutrophils and type 1 autoimmune diabetes.
    Battaglia M
    Curr Opin Hematol; 2014 Jan; 21(1):8-15. PubMed ID: 24275691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T cell epitopes and post-translationally modified epitopes in type 1 diabetes.
    McGinty JW; Marré ML; Bajzik V; Piganelli JD; James EA
    Curr Diab Rep; 2015 Nov; 15(11):90. PubMed ID: 26370701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone.
    Piganelli JD; Flores SC; Cruz C; Koepp J; Batinic-Haberle I; Crapo J; Day B; Kachadourian R; Young R; Bradley B; Haskins K
    Diabetes; 2002 Feb; 51(2):347-55. PubMed ID: 11812741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.